Advertisement

Development of humidity of natural gas control system based on linear programming methods

  • Zh. A. DayevEmail author
  • A. K. Kairakbayev
  • N. Z. Sultanov
Original Paper
  • 6 Downloads

Abstract

The article deals with the problem of developing an algorithm for controlling the humidity of natural gas and controlling gas flows during extraction from an underground storage facility in order to meet customer requirements. The problem is solved by linear programming methods. The results obtained make it possible to monitor the quality of the gas flow in the part of its humidity and to perform flow control to ensure the required humidity level. The proposed algorithm can be implemented in the form of programs written in the languages of IEC 61131-3 standard in industrial controllers when developing information-measuring systems.

Keywords

Humidity of natural gas Underground gas storage Measurement Control Measuring system 

Notes

References

  1. 1.
    Economides, M.J., Wood, D.A.: The state of natural gas. J. Nat. Gas Sci. Eng. 1(1), 1–13 (2009)CrossRefGoogle Scholar
  2. 2.
    Yorucu, V., Bahramian, P.: Price modelling of natural gas for the EW-12 countries: evidence from panel cointegration. J. Nat. Gas Sci. Eng. 24(4), 464–472 (2015)CrossRefGoogle Scholar
  3. 3.
    Moskalyov, M.N.: Water-cut log of natural gas: a look at the problem, the formulation of the problem. Gas Ind. 12, 36–38 (2000)Google Scholar
  4. 4.
    Istomin, V.A.: The Problem of Ensuring the Quality of Natural Gas and the Equilibrium of Hydrocarbon Systems with Water Phases, p. 78. IRTS Gazprom, Moscow (1999)Google Scholar
  5. 5.
    Berliner, M.A.: Humidity Measurements, p. 400. Energiya, Moscow (1973)Google Scholar
  6. 6.
    Istomin, V.A.: Condencing humimeters/watercut meters. Gas Ind. 12, 39–41 (2000)MathSciNetGoogle Scholar
  7. 7.
    Vyshivanyi, I.G., Kostyukov, V.E., Moskalyov, I.N.: Condensing hygrometers: state and prospects for improvement (Part 1). Autom. Telemech. Commun. Oil Ind. 7, 2–12 (2007)Google Scholar
  8. 8.
    Vyshivanyi, I.G., Kostyukov, V.E., Moskalyov, I.N., Kuznetsov, S.A.: Condensing hygrometers: state and prospects for improvement (Part 2). Autom. Telemech. Commun. Oil Ind. 8, 11–17 (2007)Google Scholar
  9. 9.
    Svalov, A.M.: Humidity of natural gas in the bottomhole area of the production well. Gas Ind. 1, 40–42 (2010)Google Scholar
  10. 10.
    Zhiyuan, W., Yang, Z., Baojiang, S., Jing, Y.: Features and prevention of gas hydrate blockage in test strings of deep-water gas wells. Nat. Gas. Ind. B. 1, 7 (2018).  https://doi.org/10.1016/j.ngib.2018.01.008 Google Scholar
  11. 11.
    Liang, G., Huang, X., Peng, X., Tian, Y., Yu, Y.: Investigation on the cavity evolution of underground salt cavern gas storages. J. Nat. Gas Sci. Eng. 33, 118–134 (2016)CrossRefGoogle Scholar
  12. 12.
    de Jong, C.: Gas storage valuation and optimization. J. Nat. Gas Sci. Eng. 24, 365–378 (2015)CrossRefGoogle Scholar
  13. 13.
    Zhang, G., Li, B., Zheng, D., Ding, G., Wei, H., Qian, P., Li, C.: Challenges to and proposals for underground gas storage (UGS) business in China. Nat. Gas Ind. B. 4, 231–237 (2017)CrossRefGoogle Scholar
  14. 14.
    Saul, I.: Gass Linear Programming: Methods and Applications, p. 532. Courier Corporation, Chelmsford (2003)Google Scholar
  15. 15.
    Zlender, B., Kravanja, S.: Cost optimization of the underground gas storage. Eng. Struct. 33, 2554–2562 (2011)CrossRefGoogle Scholar
  16. 16.
    Tang, L., Wang, J., Bai, F., Shi, L.: Inventory of underground gas storage based on modified material balance equation. Pet. Explor. Dev. 41, 528–532 (2014)CrossRefGoogle Scholar
  17. 17.
    Zheng, D., Xu, H., Wang, J., Sun, J., Zhao, K., Li, C., Shi, L., Tang, L.: Key evaluation techniques in the process being converted into underground gas storage. Pet. Explor. Dev. 44, 840–849 (2017)CrossRefGoogle Scholar
  18. 18.
    Almeida, J.R.U.C., De Almeida, E.L.F., Torres, E.A., Freiras, F.G.M.: Economic value of underground natural gas storage for the Brazilian power sector. Energy Policy. 121, 488–497 (2018)CrossRefGoogle Scholar
  19. 19.
    Yang, Y., Yuan, B., Sun, Q., Tang, X., Yingquan, X.: Mechanical properties of EVA-modified cement for underground gas storage. J. Nat. Gas Sci. Eng. 27, 1846–1851 (2015)CrossRefGoogle Scholar
  20. 20.
    Danel, R., Otte, L., Vancura, V., Repka, M.: Monitoring and balance of gas flow in underground gas storage. Proced. Earth Planet. Sci. 6, 485–491 (2013)CrossRefGoogle Scholar
  21. 21.
    Hagemann, B., Rasoulzadeh, M., Panfilov, M., Ganzer, L., Reitenbach, V.: Hydrogenization of underground storage of natural gas. Comput. Geosci. 20, 595–606 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Amida, A., Mignarda, D., Wilkinson, M.: Seasonal storage of hydrogen in a depleted natural gas reservoir. Int. J. Hydrogen Energy 41, 5549–5558 (2016)CrossRefGoogle Scholar
  23. 23.
    Dayev, ZhA: Fuzzy automated control system of storage and extraction of natural gas from underground. Ind. ACS Control. 8, 3–7 (2018)Google Scholar
  24. 24.
    Nordin, V.V., Murov, V.M.: Information base of monitoring system of underground gas storage. Vesti. Higher Educ. Inst. Chernozem Region 43, 79–84 (2016)Google Scholar
  25. 25.
    Nazarov, A.U., Tulyaganov, ShD: On the issue of complex modernization of the gas transportation hub. Gas Ind. 771, 66–71 (2018)Google Scholar
  26. 26.
    Shchukin, D.V.: Tasks of automation of underground gas storage facilities. Autom. Telemech. Commun. Oil Ind. 1, 28–32 (2018)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Baishev UniversityAktobeKazakhstan
  2. 2.Orenburg State UniversityOrenburgRussia

Personalised recommendations