Advertisement

Novel neural network based speed estimator for multilevel inverter fed sensorless field oriented controlled IM drive

  • A. VenkadesanEmail author
  • K. Sedhuraman
Original Paper
  • 14 Downloads

Abstract

In this paper, a new reference model adaptive system based speed estimator is proposed for multilevel inverter fed sensorless field oriented controlled induction motor drive. The proposed scheme employs 2-neural network models which is novel in this paper. The proposed speed estimator is shown to overcome low speed problems. One of the FPGA implementation issues of NN model is the identification of appropriate bit precision. The performance of reference NN estimator is studied for various bit precision and the suitable bit precision is identified compromising the memory size (resource) and the accuracy. Further the suitability of multicarrier pulse width modulation techniques for multilevel inverter is also studied. The performance is compared in terms of magnitude of the output voltage and total harmonics distortion and suitable modulation technique is identified. The encouraging results obtained are presented.

Keywords

Neural network based speed estimator Multilevel inverter Modulation techniques Induction motor drives Sensorless drives 

List of symbols

\( {\text{v}}^{\text{S}}_{\text{ds}} ,{\text{v}}^{\text{S}}_{\text{qs}} \)

d-Axis Stator voltage, q-axis Stator voltage

\( {\text{i}}^{\text{S}}_{\text{ds}} ,{\text{i}}^{\text{S}}_{\text{qs}} \)

d-Axis Stator current, q-axis stator current

\( {{\varphi }}^{\text{S}}_{\text{dr}} ,{{\varphi }}^{\text{S}}_{\text{qr}} \)

d-Axis Rotor flux, q-axis rotor flux

\( {\text{R}}_{\text{s}} ,{\text{R}}_{\text{r}} \)

Stator resistance, rotor resistance

\( {\text{L}}_{\text{s}} ,{\text{L}}_{\text{r}} \)

Stator inductance, rotor inductance

\( {\text{L}}_{\text{m}} \)

Magnetization inductance

\( {\text{T}}_{\text{s}} \)

Sampling time

\( {{\omega }}_{\text{r}} \)

Rotor speed (rad/s)

Superscript s

Stationary reference frame

Superscript e

Synchronous reference frame

w1

 \( {1 - \text{ (T}}_{\text{s}} / {\text{T}}_{\text{r}} ) \)

w2

\({{\omega }}_{{\text{r}}} {\text{T}}_{{\text{s}}}\) 

w3

\({\text{ (L}}_{{\text{m}}} {\text{T}}_{\text{s}} ) / {\text{T}}_{\text{r}} \) 

Notes

References

  1. 1.
    Witold, P., Van Huynh, K., Michael, R.H.: Temperature rise estimation of induction motor drives based on loadability curves to facilitate design of electric power trains. IEEE Trans. Ind. Inf. 13(3), 985–994 (2017)CrossRefGoogle Scholar
  2. 2.
    Douiri, M.R., Hbib, M., Cherkaoui, M.: Neural computation based vector controlled asynchronous motor fed by three levels NPC. Energy Syst. 8(4), 693–707 (2017)CrossRefGoogle Scholar
  3. 3.
    Bin, Wu: High power converters and AC drives. Wiley, IEEE Press, Amsterdam (2006)Google Scholar
  4. 4.
    Palanivel, P., Dash, S.S.: Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques. Int. J. Res. Eng. Technol. 4(8), 951–958 (2011)Google Scholar
  5. 5.
    Venkadesan, A., Prakhar, K., Mahesh, Y., Ankit, K.: Cascaded H bridge multilevel inverter using phase opposition disposition technique for induction motor drives. Int. J. Appl. Eng. Res. 10(51), 439–444 (2015)Google Scholar
  6. 6.
    Venkadesan, A., Priyatosh, P., Priti, A., Varun, P.: Cascaded H-bridge multilevel inverter for induction motor drives. Int. J. Res. Eng. Technol. 3(5), 260–266 (2014)CrossRefGoogle Scholar
  7. 7.
    Chitra, S.H.: Investigation and analysis of high performance green energy induction motor drive with intelligent estimator. Elsevier Renew. Energy. 87, 965–976 (2016)CrossRefGoogle Scholar
  8. 8.
    Rakesh, K., Sukanta, D., Prasid, S., Ajit, K.C.: Review on model reference adaptive system for sensor-less vector control of induction motor drives. IET Electr. Appl. 9(7), 496–511 (2015)CrossRefGoogle Scholar
  9. 9.
    Rashed, M., Stronach, A.F.: A stable back-EMF MRAS-based sensor-less low speed induction motor drive insensitive to stator resistance variation. IEE Electr. Appl. 151(6), 685–693 (2004)CrossRefGoogle Scholar
  10. 10.
    Bensialia, N., Etienb, E., Benaliaa, N.: Convergence analysis of back-EMF MRAS observers used in sensor-less control of induction motor drives. Math. Comput. Simul. 115, 12–23 (2015)CrossRefGoogle Scholar
  11. 11.
    Suman, M., Chandan, C.: A new instantaneous reactive power based MRAS for sensor-less induction motor drive. Simul. Modell. Pract. Theory. 18, 1314–1326 (2010)CrossRefGoogle Scholar
  12. 12.
    Shauder, C.: Adaptive speed identification for vector control of induction motors without rotational transducers. IEEE Trans. Ind. Appl. 28(5), 1054–1061 (1992)CrossRefGoogle Scholar
  13. 13.
    Ben-Brahim, L., Tadakuma, S.: Akdag, A speed control of induction motor without rotational transducer. IEEE Trans. Ind. Appl. 35(4), 844–850 (1999)CrossRefGoogle Scholar
  14. 14.
    Bimal, K.B.: Modern power electronics and AC drives. Prentice-Hall Pvt. Ltd., India (2005)Google Scholar
  15. 15.
    Venkadesan, A., Himavathi, S., Sedhuraman, K., Muthuramalingam, A.: Design and field programmable gate array implementation of cascade neural network based flux estimator for speed estimation in induction motor drives. IET Electr. Power Appl. 11(1), 121–131 (2017)CrossRefGoogle Scholar
  16. 16.
    Holtz, J., Quan, J.: Drift- and parameter-compensated flux estimator for persistent zero-stator- frequency operation of sensor-less-controlled induction motors. IEEE Trans. Ind. Appl. 39(4), 1052–1060 (2003)CrossRefGoogle Scholar
  17. 17.
    Hu, J., Wu, B.: New integration algorithms for estimating motor flux over a wide speed range. IEEE Trans. Power Electron. 13(5), 969–977 (1998)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Rende, Z., Zhen, X., Poh, C.L., Frede, B.: A novel flux estimator based on multiple second-order generalized integrators and frequency-locked loop for induction motor drives. IEEE Trans. Power Electron. 32(8), 6286–6296 (2017)CrossRefGoogle Scholar
  19. 19.
    Djordje, S., Milan, M., Slavko, V., Ilija, K.: Improved stator flux estimator for speed sensor-less induction motor drives. IEEE Trans. Power Electron. 30(4), 2363–2371 (2015)CrossRefGoogle Scholar
  20. 20.
    Karanayil, B., Rahman, M.F., Grantham, C.: Online stator and rotor resistance estimation scheme using artificial neural networks for vector controlled speed sensor-less induction motor drive. IEEE Trans. Ind. Electron. 54(1), 167–176 (2007)CrossRefGoogle Scholar
  21. 21.
    Ridvan, D., Murat, B., Recep, Y., Remzi, I., Emrah, Z.: EKF based rotor and stator resistance estimations for direct torque control of Induction Motors. In International conference on optimization of electrical and electronic equipment (OPTIM) & 2017 Intl Aegean conference on electrical machines and power electronics (ACEMP). pp. 376–381 (2017)Google Scholar
  22. 22.
    Shady, M.G., Damian, G., John, W.F.: Sensor-less control of induction motor drives at very low and zero speeds using neural network flux observer. IEEE Trans Ind. Electron. 56(8), 3029–3039 (2009)CrossRefGoogle Scholar
  23. 23.
    Venkadesan, A., Himavathi, S., Muthuramalingam, A.: Novel SNC-NN-MRAS based speed estimator for sensor-less vector controlled IM drives. WASET J 5, 947–952 (2011)Google Scholar
  24. 24.
    Monmasson, E., Idkhajine, L., Cirstea, M.N., et al.: FPGAs in industrial control applications. IEEE Trans. Ind. Inf. 7(2), 224–243 (2011)CrossRefGoogle Scholar
  25. 25.
    Orlowska-Kowalska, T., Kaminski, M.: FPGA implementation of the multilayer neural network for the speed estimation of the two-mass drive system. IEEE Trans. Ind. Inf. 7(3), 436–445 (2011)CrossRefGoogle Scholar
  26. 26.
    Maurizio, C., Marcello, P.: An MRAS-based sensor-less high-performance induction motor drive with a predictive adaptive model. IEEE Trans. Ind. Electron 52(2), 532–551 (2005)CrossRefGoogle Scholar
  27. 27.
    Venkadesan, A., Himavathi, S., Muthuramalingam, A.: Performance comparison of neural architectures for on-line flux estimation in sensor-less vector controlled IM drives. Spring J. Neural Comput. Appl. 22, 1735–1744 (2013)CrossRefGoogle Scholar
  28. 28.
    Venkadesan, A., Himavathi, S., Muthuramalingam, A.: A novel NN based rotor flux MRAS to overcome low speed problems for rotor resistance estimation in vector controlled IM drives. Front. Energy. Spring. 10(4), 382–392 (2016)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.EEE DepartmentNIT PuducherryKaraikalIndia
  2. 2.EEE DepartmentMVIT PuducherryKaraikalIndia

Personalised recommendations