Advertisement

An overview on synthesis and design of microalgal biorefinery configurations by employing superstructure-based optimization approach

  • Muhammad Rizwan
  • Ali Almansoori
  • Ali Elkamel
Original Paper
  • 65 Downloads

Abstract

A large number of potential technological alternatives exist for the development of microalgal biorefinery to produce a variety of end-products from microalgal biomass and their residues. The design of the promising biorefinery configurations considering preliminary and uncertain nature of technologies is one of the major biorefinery challenges, and it must be addressed systematically. This article presents key issues, challenges and opportunities for the modeling and optimization of microalgae-based biorefinery configurations. It reviews the processing pathways/networks for producing biofuels and various platform chemicals from microalgae with an emphasis on the development of the systematic modeling framework. Superstructure-based modeling and optimization can be a useful tool to identify the optimal/promising biorefinery configurations. Key components of the superstructure-based modeling framework are described, along with a comprehensive review of the existing studies on the superstructure-based optimization of biofuels/bioenergy production from microalgae. This paper also identifies potential perspectives for future research focusing on the application of the superstructure-based approach for the systematic design of sustainable microalgal biorefineries. Perspectives on the future integrated biorefineries considering carbon mitigation as well as heat and power integration are presented. Issues on sustainability and uncertainties modeling in the biorefinery design phase are also discussed.

Keywords

Microalgae-based biorefinery Biofuels Superstructure-based modeling Process synthesis Optimization 

Notes

Acknowledgements

The authors are thankful to the research office of the Petroleum Institute, Abu Dhabi for providing the financial support for this work.

References

  1. 1.
    Harun, R., Singh, M., Forde, G.M., Danquah, M.K.: Bioprocess engineering of microalgae to produce a variety of consumer products. Renew. Sustain. Energy Rev. 14(3), 1037–1047 (2010)CrossRefGoogle Scholar
  2. 2.
    Borowitzka, M.A.: High-value products from microalgae—their development and commercialisation. J. Appl. Phycol. 25(3), 743–756 (2013)CrossRefGoogle Scholar
  3. 3.
    Chisti, Y.: Biodiesel from microalgae. Biotechnol. Adv. 25(3), 294–306 (2007)CrossRefGoogle Scholar
  4. 4.
    Li, Y., Horsman, M., Wu, N., Lan, C.Q., Dubois-Calero, N.: Biofuels from microalgae. Biotechnol. Progr. 24(4), 815–820 (2008)Google Scholar
  5. 5.
    Gouveia, L.: Microalgae as a Feedstock for Biofuels. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Posten, C., Schaub, G.: Microalgae and terrestrial biomass as source for fuels—a process view. J. Biotechnol. 142(1), 64–69 (2009)CrossRefGoogle Scholar
  7. 7.
    Ahmad, A.L., Yasin, N.H.M., Derek, C.J.C., Lim, J.K.: Microalgae as a sustainable energy source for biodiesel production: a review. Renew. Sustain. Energy Rev. 15(1), 584–593 (2011)CrossRefGoogle Scholar
  8. 8.
    Suali, E., Sarbatly, R.: Conversion of microalgae to biofuel. Renew. Sustain. Energy Rev. 16(6), 4316–4342 (2012)CrossRefGoogle Scholar
  9. 9.
    Singh, J., Gu, S.: Commercialization potential of microalgae for biofuels production. Renew. Sustain. Energy Rev. 14(9), 2596–2610 (2010)CrossRefGoogle Scholar
  10. 10.
    Pires, J.C.M., Alvim-Ferraz, M.C.M., Martins, F.G., Simões, M.: Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renew. Sustain. Energy Rev. 16(5), 3043–3053 (2012)CrossRefGoogle Scholar
  11. 11.
    Rizwan, M.: Superstructure-based identification of optimal processing pathways for microalgae-based biorefinery. PhD Thesis, KAIST, South Korea (2015)Google Scholar
  12. 12.
    Gong, J., You, F.: Global optimization for sustainable design and synthesis of algae processing network for CO2 mitigation and biofuel production using life cycle optimization. AlChE J. 60(9), 3195–3210 (2014)CrossRefGoogle Scholar
  13. 13.
    Pham, V., El-Halwagi, M.: Process synthesis and optimization of biorefinery configurations. AlChE J. 58(4), 1212–1221 (2012)CrossRefGoogle Scholar
  14. 14.
    Romero-García, J.M., Niño, L., Martínez-Patiño, C., Álvarez, C., Castro, E., Negro, M.J.: Biorefinery based on olive biomass. State of the art and future trends. Bioresour. Technol. 159, 421–432 (2014)CrossRefGoogle Scholar
  15. 15.
    Frombo, F., Minciardi, R., Robba, M., Rosso, F., Sacile, R.: A dynamic decision model for the optimal use of forest biomass for energy production. Energy Syst. 7(4), 615–635 (2016)CrossRefGoogle Scholar
  16. 16.
    Nigam, P.S., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37(1), 52–68 (2011)CrossRefGoogle Scholar
  17. 17.
    Collet, P., Spinelli, D., Lardon, L., Hélias, A., Steyer, J.-P., Bernard, O.: Chapter 13—life-cycle assessment of microalgal-based biofuels. In: Lee, D.-J., Chisti, Y., Soccol, C.R. (eds.) Biofuels from Algae, pp. 287–312. Elsevier, Amsterdam (2014)CrossRefGoogle Scholar
  18. 18.
    Yen, H.-W., Hu, I.C., Chen, C.-Y., Ho, S.-H., Lee, D.-J., Chang, J.-S.: Microalgae-based biorefinery—from biofuels to natural products. Bioresour. Technol. 135, 166–174 (2013)CrossRefGoogle Scholar
  19. 19.
    Rawat, I., Ranjith Kumar, R., Mutanda, T., Bux, F.: Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl. Energy 103, 444–467 (2013)CrossRefGoogle Scholar
  20. 20.
    Rizwan, M., Lee, J.H., Gani, R.: Optimal design of microalgae-based biorefinery: economics, opportunities and challenges. Appl. Energy 150, 69–79 (2015)CrossRefGoogle Scholar
  21. 21.
    Rashid, N., Rehman, M.S.U., Han, J.-I.: Recycling and reuse of spent microalgal biomass for sustainable biofuels. Biochem. Eng. J. 75, 101–107 (2013)CrossRefGoogle Scholar
  22. 22.
    Fresewinkel, M., Rosello, R., Wilhelm, C., Kruse, O., Hankamer, B., Posten, C.: Integration in microalgal bioprocess development: design of efficient, sustainable, and economic processes. Eng. Life Sci. 14(6), 560–573 (2014)CrossRefGoogle Scholar
  23. 23.
    Khan, S.A., Rashmi Hussain, M.Z., Prasad, S., Banerjee, U.C.: Prospects of biodiesel production from microalgae in India. Renew. Sustain. Energy Rev. 13(9), 2361–2372 (2009)CrossRefGoogle Scholar
  24. 24.
    Schneider, R.C.S., Bjerk, T.R., Gressler, P.D., Souza, M.P., Corbellini, V.A., Lobo, E.A.: Potential production of biofuel from microalgae biomass produced in wastewater. In: Fang, Z. (ed.) Biodiesel—Feedstock, Production and Applications, pp. 3–24. InTech, Croatia (2012)Google Scholar
  25. 25.
    Zhu, L.: Biorefinery as a promising approach to promote microalgae industry: an innovative framework. Renew. Sustain. Energy Rev. 41, 1376–1384 (2015)CrossRefGoogle Scholar
  26. 26.
    Barsanti, L., Gualtieri, P.: Is exploitation of microalgae economically and energetically sustainable? Algal Res. 31, 107–115 (2018)CrossRefGoogle Scholar
  27. 27.
    Poddar, T., Jagannath, A., Almansoori, A.: Use of reactive distillation in biodiesel production: a simulation-based comparison of energy requirements and profitability indicators. Appl. Energy 185, 985–997 (2017)CrossRefGoogle Scholar
  28. 28.
    Demirbas, A.: Competitive liquid biofuels from biomass. Appl. Energy 88(1), 17–28 (2011)CrossRefGoogle Scholar
  29. 29.
    Morrison, G.M., Parker, N.C., Witcover, J., Fulton, L.M., Pei, Y.: Comparison of supply and demand constraints on US biofuel expansion. Energy Strateg. Rev. 5, 42–47 (2014)CrossRefGoogle Scholar
  30. 30.
    Raheem, A., Prinsen, P., Vuppaladadiyam, A.K., Zhao, M., Luque, R.: A review on sustainable microalgae based biofuel and bioenergy production: recent developments. J. Clean. Prod. 181, 42–59 (2018)CrossRefGoogle Scholar
  31. 31.
    Najafi, G., Ghobadian, B., Yusaf, T.F.: Algae as a sustainable energy source for biofuel production in Iran: a case study. Renew. Sustain. Energy Rev. 15(8), 3870–3876 (2011)CrossRefGoogle Scholar
  32. 32.
    Rizwan, M., Lee, J.H., Gani, R.: Optimal processing pathway for the production of biodiesel from microalgal biomass: a superstructure based approach. Comput. Chem. Eng. 58, 305–314 (2013)CrossRefGoogle Scholar
  33. 33.
    Pagliaro, M., Ciriminna, R., Kimura, H., Rossi, M., Della Pina, C.: From glycerol to value-added products. Angew. Chem. Int. Ed. 46(24), 4434–4440 (2007)CrossRefGoogle Scholar
  34. 34.
    Subhadra, B.G., Edwards, M.: Coproduct market analysis and water footprint of simulated commercial algal biorefineries. Appl. Energy 88(10), 3515–3523 (2011)CrossRefGoogle Scholar
  35. 35.
    Moon, C., Ahn, J.-H., Kim, S.W., Sang, B.-I., Um, Y.: Effect of biodiesel-derived raw glycerol on 1,3-propanediol production by different microorganisms. Appl. Biochem. Biotechnol. 161(1), 502–510 (2010)CrossRefGoogle Scholar
  36. 36.
    Mu, Y., Teng, H., Zhang, D.-J., Wang, W., Xiu, Z.-L.: Microbial production of 1,3-propanediol by Klebsiella pneumoniae using crude glycerol from biodiesel preparations. Biotechnol. Lett. 28(21), 1755–1759 (2006)CrossRefGoogle Scholar
  37. 37.
    Moncada, J., Jaramillo, J.J., Higuita, J.C., Younes, C., Cardona, C.A.: Production of bioethanol using Chlorella vulgaris cake: a technoeconomic and environmental assessment in the Colombian context. Ind. Eng. Chem. Res. 52(47), 16786–16794 (2013)CrossRefGoogle Scholar
  38. 38.
    Holm-Nielsen, J.B., Al Seadi, T., Oleskowicz-Popiel, P.: The future of anaerobic digestion and biogas utilization. Bioresour. Technol. 100(22), 5478–5484 (2009)CrossRefGoogle Scholar
  39. 39.
    Amaro, H.M., Macedo, Â.C., Malcata, F.X.: Microalgae: an alternative as sustainable source of biofuels? Energy 44(1), 158–166 (2012)CrossRefGoogle Scholar
  40. 40.
    Uggetti, E., Sialve, B., Trably, E., Steyer, J.-P.: Integrating microalgae production with anaerobic digestion: a biorefinery approach. Biofuels, Bioprod. Biorefin. 8(4), 516–529 (2014)CrossRefGoogle Scholar
  41. 41.
    Miao, X., Wu, Q., Yang, C.: Fast pyrolysis of microalgae to produce renewable fuels. J. Anal. Appl. Pyrolysis 71(2), 855–863 (2004)CrossRefGoogle Scholar
  42. 42.
    Miao, X., Wu, Q.: High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J. Biotechnol. 110(1), 85–93 (2004)CrossRefGoogle Scholar
  43. 43.
    Du, Z., Li, Y., Wang, X., Wan, Y., Chen, Q., Wang, C., Lin, X., Liu, Y., Chen, P., Ruan, R.: Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresour. Technol. 102(7), 4890–4896 (2011)CrossRefGoogle Scholar
  44. 44.
    Ghirardi, M.L., Zhang, L., Lee, J.W., Flynn, T., Seibert, M., Greenbaum, E., Melis, A.: Microalgae: a green source of renewable H2. Trends Biotechnol. 18(12), 506–511 (2000)CrossRefGoogle Scholar
  45. 45.
    Rashid, N., Choi, W., Lee, K.: Optimization of two-staged bio-hydrogen production by immobilized Microcystis aeruginosa. Biomass Bioenergy 36, 241–249 (2012)CrossRefGoogle Scholar
  46. 46.
    Ferreira, A.F., Ortigueira, J., Alves, L., Gouveia, L., Moura, P., Silva, C.M.: Energy requirement and CO2 emissions of bioH2 production from microalgal biomass. Biomass Bioenergy 49, 249–259 (2013)CrossRefGoogle Scholar
  47. 47.
    Lv, P., Wu, C., Ma, L., Yuan, Z.: A study on the economic efficiency of hydrogen production from biomass residues in China. Renew. Energy 33(8), 1874–1879 (2008)CrossRefGoogle Scholar
  48. 48.
    Yang, Z., Guo, R., Xu, X., Fan, X., Li, X.: Enhanced hydrogen production from lipid-extracted microalgal biomass residues through pretreatment. Int. J. Hydrog Energy 35(18), 9618–9623 (2010)CrossRefGoogle Scholar
  49. 49.
    Suganya, T., Varman, M., Masjuki, H.H., Renganathan, S.: Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: a biorefinery approach. Renew. Sustain. Energy Rev. 55, 909–941 (2016)CrossRefGoogle Scholar
  50. 50.
    Trivedi, J., Aila, M., Bangwal, D.P., Kaul, S., Garg, M.O.: Algae based biorefinery—how to make sense? Renew. Sustain. Energy Rev. 47, 295–307 (2015)CrossRefGoogle Scholar
  51. 51.
    Brennan, L., Owende, P.: Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 14(2), 557–577 (2010)CrossRefGoogle Scholar
  52. 52.
    Kim, J., Yoo, G., Lee, H., Lim, J., Kim, K., Kim, C.W., Park, M.S., Yang, J.-W.: Methods of downstream processing for the production of biodiesel from microalgae. Biotechnol. Adv. 31(6), 862–876 (2013)CrossRefGoogle Scholar
  53. 53.
    Rizwan, M., Zaman, M., Lee, J.H., Gani, R.: Optimal processing pathway selection for microalgae-based biorefinery under uncertainty. Comput. Chem. Eng. 82, 362–373 (2015)CrossRefGoogle Scholar
  54. 54.
    Brownbridge, G., Azadi, P., Smallbone, A., Bhave, A., Taylor, B., Kraft, M.: The future viability of algae-derived biodiesel under economic and technical uncertainties. Bioresour. Technol. 151, 166–173 (2014)CrossRefGoogle Scholar
  55. 55.
    Liu, P., Pistikopoulos, E.N., Li, Z.: Energy systems engineering: methodologies and applications. Front. Energy Power Eng. China 4(2), 131–142 (2010)CrossRefGoogle Scholar
  56. 56.
    Yue, D., You, F., Snyder, S.W.: Biomass-to-bioenergy and biofuel supply chain optimization: overview, key issues and challenges. Comput. Chem. Eng. 66, 36–56 (2014)CrossRefGoogle Scholar
  57. 57.
    Yeomans, H., Grossmann, I.E.: A systematic modeling framework of superstructure optimization in process synthesis. Comput. Chem. Eng. 23(6), 709–731 (1999)CrossRefGoogle Scholar
  58. 58.
    Grossmann, I.E.: Papers from the 25th CONICET international conference mixed-integer programming approach for the synthesis of integrated process flowsheets. Comput. Chem. Eng. 9(5), 463–482 (1985)CrossRefGoogle Scholar
  59. 59.
    Grossmann, I.E.: Mixed-integer optimization techniques for algorithmic process synthesis. In: John, L.A. (ed.) Advances in Chemical Engineering, vol. 23, pp. 171–246. Academic Press, London (1996)Google Scholar
  60. 60.
    Farkas, T., Rev, E., Lelkes, Z.: Process flowsheet superstructures: structural multiplicity and redundancy: Part II: Ideal and binarily minimal MINLP representations. Comput. Chem. Eng. 29(10), 2198–2214 (2005)CrossRefGoogle Scholar
  61. 61.
    Quaglia, A., Sarup, B., Sin, G., Gani, R.: Integrated business and engineering framework for synthesis and design of enterprise-wide processing networks. Comput. Chem. Eng. 38, 213–223 (2012)CrossRefGoogle Scholar
  62. 62.
    Land, A.H., Doig, A.G.: An automatic method of solving discrete programming problems. Econometrica 28(3), 497–520 (1960)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Geoffrion, A.M.: Generalized benders decomposition. J. Optim. Theory Appl. 10(4), 237–260 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Duran, M.A., Grossmann, I.E.: An outer-approximation algorithm for a class of mixed-integer nonlinear programs. Math. Program. 36(3), 307–339 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  65. 65.
    Fletcher, R., Leyffer, S.: Solving mixed integer nonlinear programs by outer approximation. Math. Program. 66(1), 327–349 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Edgar, T.F., Himmelblau, D.M., Lasdon, L.S.: Optimization of Chemical Processes. McGraw-Hill, New York (2001)Google Scholar
  67. 67.
    Grossmann, I.E.: Mixed-integer nonlinear programming techniques for the synthesis of engineering systems. Res. Eng. Des. 1(3), 205–228 (1990)CrossRefGoogle Scholar
  68. 68.
    Yuan, Z., Chen, B., Gani, R.: Applications of process synthesis: moving from conventional chemical processes towards biorefinery processes. Comput. Chem. Eng. 49, 217–229 (2013)CrossRefGoogle Scholar
  69. 69.
    Alvarado-Morales, M., Terra, J., Gernaey, K.V., Woodley, J.M., Gani, R.: Biorefining: computer aided tools for sustainable design and analysis of bioethanol production. Chem. Eng. Res. Des. 87(9), 1171–1183 (2009)CrossRefGoogle Scholar
  70. 70.
    Bertran, M.-O., Frauzem, R., Sanchez-Arcilla, A.-S., Zhang, L., Woodley, J.M., Gani, R.: A generic methodology for processing route synthesis and design based on superstructure optimization. Comput. Chem. Eng. 106, 892–910 (2017)CrossRefGoogle Scholar
  71. 71.
    Zondervan, E., Nawaz, M., de Haan, A.B., Woodley, J.M., Gani, R.: Optimal design of a multi-product biorefinery system. Comput. Chem. Eng. 35(9), 1752–1766 (2011)CrossRefGoogle Scholar
  72. 72.
    Yuan, Z., Chen, B.: Process synthesis for addressing the sustainable energy systems and environmental issues. AlChE J. 58(11), 3370–3389 (2012)CrossRefGoogle Scholar
  73. 73.
    Yılmaz, S., Selim, H.: A review on the methods for biomass to energy conversion systems design. Renew. Sustain. Energy Rev. 25, 420–430 (2013)CrossRefGoogle Scholar
  74. 74.
    Daoutidis, P., Kelloway, A., Marvin, W.A., Rangarajan, S., Torres, A.I.: Process systems engineering for biorefineries: new research vistas. Curr. Opin. Chem. Eng. 2(4), 442–447 (2013)CrossRefGoogle Scholar
  75. 75.
    Rizwan, M., Lee, J.H., Gani, R.: Superstructure optimization of biodiesel production from microalgal biomass. IFAC Proc. Vol. 46(32), 111–116 (2013)CrossRefGoogle Scholar
  76. 76.
    Gong, J., You, F.: Optimal design and synthesis of algal biorefinery processes for biological carbon sequestration and utilization with zero direct greenhouse gas emissions: MINLP model and global optimization algorithm. Ind. Eng. Chem. Res. 53(4), 1563–1579 (2014)CrossRefGoogle Scholar
  77. 77.
    Yu, N., Dieu, L.T.J., Harvey, S., Lee, D.-Y.: Optimization of process configuration and strain selection for microalgae-based biodiesel production. Bioresour. Technol. 193, 25–34 (2015)CrossRefGoogle Scholar
  78. 78.
    Gupta, S.S., Shastri, Y., Bhartiya, S.: Model-based optimisation of biodiesel production from microalgae. Comput. Chem. Eng. 89, 222–249 (2016)CrossRefGoogle Scholar
  79. 79.
    Gupta, S.S., Shastri, Y., Bhartiya, S.: Optimization of integrated microalgal biorefinery producing fuel and value-added products. Biofuels Bioprod. Biorefin. 11(6), 1030–1050 (2017)CrossRefGoogle Scholar
  80. 80.
    Martín, M., Grossmann, I.E.: Simultaneous optimization and heat integration for biodiesel production from cooking oil and algae. Ind. Eng. Chem. Res. 51(23), 7998–8014 (2012)CrossRefGoogle Scholar
  81. 81.
    Slegers, P.M., Koetzier, B.J., Fasaei, F., Wijffels, R.H., van Straten, G., van Boxtel, A.J.B.: A model-based combinatorial optimisation approach for energy-efficient processing of microalgae. Algal Res. 5, 140–157 (2014)CrossRefGoogle Scholar
  82. 82.
    Gebreslassie, B.H., Waymire, R., You, F.: Sustainable design and synthesis of algae-based biorefinery for simultaneous hydrocarbon biofuel production and carbon sequestration. AlChE J. 59(5), 1599–1621 (2013)CrossRefGoogle Scholar
  83. 83.
    Nodooshan, K.G., Moraga, R.J., Chen, S.-J.G., Nguyen, C., Wang, Z., Mohseni, S.: Environmental and economic optimization of algal biofuel supply chain with multiple technological pathways. Ind. Eng. Chem. Res. 57(20), 6910–6925 (2018)CrossRefGoogle Scholar
  84. 84.
    García Prieto, C.V., Ramos, F.D., Estrada, V., Villar, M.A., Diaz, M.S.: Optimization of an integrated algae-based biorefinery for the production of biodiesel, astaxanthin and PHB. Energy 139, 1159–1172 (2017)CrossRefGoogle Scholar
  85. 85.
    IPCC: IPCC Special Report on Carbon Dioxide Capture and Storage: Prepared by Working Group III of the Intergovernmental Panel on Climate Change [Metz, B., Davidson, O., de Coninck, H., Loos, M., Meyer, L. (eds.)]. Cambridge University Press, New York (2005)Google Scholar
  86. 86.
    Thomson, D., Khare, A.: Carbon capture and storage (CCS) deployment—can Canada capitalize on experience? J. Technol. Manage. Innovation 3, 111–118 (2008)CrossRefGoogle Scholar
  87. 87.
    Wennersten, R., Sun, Q., Li, H.: The future potential for Carbon Capture and Storage in climate change mitigation—an overview from perspectives of technology, economy and risk. J. Clean. Prod. 103, 724–736 (2015)CrossRefGoogle Scholar
  88. 88.
    Singham, D.I., Cai, W., White, J.A.: Optimal carbon capture and storage contracts using historical CO2 emissions levels. Energy Syst. 6(3), 331–360 (2015)CrossRefGoogle Scholar
  89. 89.
    DOE/NETL: DOE/NETL Carbon Dioxide Capture and Storage R&D Roadmap. US Department of Energy and National Energy Technology Laboratory (2010)Google Scholar
  90. 90.
    Huang, Y., Rebennack, S., Zheng, Q.P.: Techno-economic analysis and optimization models for carbon capture and storage: a survey. Energy Syst. 4(4), 315–353 (2013)CrossRefGoogle Scholar
  91. 91.
    Gutiérrez-Arriaga, C.G., Serna-González, M., Ponce-Ortega, J.M., El-Halwagi, M.M.: Sustainable integration of algal biodiesel production with steam electric power plants for greenhouse gas mitigation. ACS Sustain. Chem. Eng. 2(6), 1388–1403 (2014)CrossRefGoogle Scholar
  92. 92.
    Olaizola, M.: Microalgal removal of CO2 from flue gases: changes in medium pH and flue gas composition do not appear to affect the photochemical yield of microalgal cultures. Biotechnol. Bioprocess Eng. 8(6), 360–367 (2003)CrossRefGoogle Scholar
  93. 93.
    Ghorbani, A., Rahimpour, H.R., Ghasemi, Y., Zoughi, S., Rahimpour, M.R.: A review of carbon capture and sequestration in Iran: microalgal biofixation potential in Iran. Renew. Sustain. Energy Rev. 35, 73–100 (2014)CrossRefGoogle Scholar
  94. 94.
    Zhao, B., Su, Y.: Process effect of microalgal-carbon dioxide fixation and biomass production: a review. Renew. Sustain. Energy Rev. 31, 121–132 (2014)CrossRefGoogle Scholar
  95. 95.
    de Queiroz Fernandes Araújo, O., de Luiz Medeiros, J., Yokoyama, L., do Rosário Vaz Morgado, C.: Metrics for sustainability analysis of post-combustion abatement of CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage). Energy 92(3), 556–568 (2015)CrossRefGoogle Scholar
  96. 96.
    Baral, S.S., Singh, K., Sharma, P.: The potential of sustainable algal biofuel production using CO2 from thermal power plant in India. Renew. Sustain. Energy Rev. 49, 1061–1074 (2015)CrossRefGoogle Scholar
  97. 97.
    Cheah, W.Y., Show, P.L., Chang, J.-S., Ling, T.C., Juan, J.C.: Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresour. Technol. 184, 190–201 (2015)CrossRefGoogle Scholar
  98. 98.
    Cuellar-Bermudez, S.P., Garcia-Perez, J.S., Rittmann, B.E., Parra-Saldivar, R.: Photosynthetic bioenergy utilizing CO2: an approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 98, 53–65 (2015)CrossRefGoogle Scholar
  99. 99.
    Zhao, B., Su, Y., Zhang, Y., Cui, G.: Carbon dioxide fixation and biomass production from combustion flue gas using energy microalgae. Energy 89, 347–357 (2015)CrossRefGoogle Scholar
  100. 100.
    Gupta, S.S., Shastri, Y., Bhartiya, S.: Integrated microalgae biorefinery: impact of product demand profile and prospect of carbon capture. Biofuels Bioprod. Biorefin. 11(6), 1065–1076 (2017)CrossRefGoogle Scholar
  101. 101.
    Rezvani, S., Moheimani, N.R., Bahri, P.A.: Techno-economic assessment of CO2 bio-fixation using microalgae in connection with three different state-of-the-art power plants. Comput. Chem. Eng. 84, 290–301 (2016)CrossRefGoogle Scholar
  102. 102.
    Reen, C.S., Wayne, C.K., Loke, S.P., Jiun, Y.Y., Chyuan, O.H., Chuan, L.T., Jo-Shu, C.: Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: a review. Biotechnol. J. 13(6), 1700618 (2018)Google Scholar
  103. 103.
    Ng, R.T.L., Tay, D.H.S., Ng, D.K.S.: Simultaneous process synthesis, heat and power integration in a sustainable integrated biorefinery. Energy Fuels 26(12), 7316–7330 (2012)CrossRefGoogle Scholar
  104. 104.
    Martín, M., Grossmann, I.E.: Optimal engineered algae composition for the integrated simultaneous production of bioethanol and biodiesel. AlChE J. 59(8), 2872–2883 (2013)CrossRefGoogle Scholar
  105. 105.
    Hariskos, I., Posten, C.: Biorefinery of microalgae—opportunities and constraints for different production scenarios. Biotechnol. J. 9(6), 739–752 (2014)CrossRefGoogle Scholar
  106. 106.
    Azapagic, A.: Life cycle assessment and its application to process selection, design and optimisation. Chem. Eng. J. 73(1), 1–21 (1999)CrossRefGoogle Scholar
  107. 107.
    Azapagic, A., Clift, R.: The application of life cycle assessment to process optimisation. Comput. Chem. Eng. 23(10), 1509–1526 (1999)CrossRefGoogle Scholar
  108. 108.
    Zaimes, G.G., Khanna, V.: Chapter 8—life cycle sustainability aspects of microalgal biofuels. In: Klemes, J. (ed.) Assessing and Measuring Environmental Impact and Sustainability, pp. 255–276. Butterworth-Heinemann, Oxford (2015)CrossRefGoogle Scholar
  109. 109.
    Singh, A., Olsen, S.I.: A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Appl. Energy 88(10), 3548–3555 (2011)CrossRefGoogle Scholar
  110. 110.
    Quinn, J.C., Davis, R.: The potentials and challenges of algae based biofuels: a review of the techno-economic, life cycle, and resource assessment modeling. Bioresour. Technol. 184, 444–452 (2015)CrossRefGoogle Scholar
  111. 111.
    Thomassen, G., Van Dael, M., Lemmens, B., Van Passel, S.: A review of the sustainability of algal-based biorefineries: towards an integrated assessment framework. Renew. Sustain. Energy Rev. 68, 876–887 (2017)CrossRefGoogle Scholar
  112. 112.
    Gong, J., You, F.: Value-added chemicals from microalgae: Greener, more economical, or both? ACS Sustain. Chem. Eng. 3(1), 82–96 (2015)CrossRefGoogle Scholar
  113. 113.
    Rizwan, M., Lee, J.H., Gani, R.: Synthesis of optimal processing pathway for microalgae-based biorefinery under uncertainty. Comput. Aided Chem. Eng. 37, 2303–2308 (2015)CrossRefGoogle Scholar
  114. 114.
    Birge, J.R., Louveaux, F.: Introduction to Stochastic Programming (Springer Series in Operation Research). Springer, New York (1999)Google Scholar
  115. 115.
    Dua, V., Pistikopoulos, E.N.: Optimization techniques for process synthesis and material design under uncertainty. Chem. Eng. Res. Des. 76(3), 408–416 (1998)CrossRefGoogle Scholar
  116. 116.
    Grossmann, I.E.: Enterprise-wide optimization: a new frontier in process systems engineering. AlChE J. 51(7), 1846–1857 (2005)CrossRefGoogle Scholar
  117. 117.
    Karuppiah, R., Grossmann, I.E.: Global optimization of multiscenario mixed integer nonlinear programming models arising in the synthesis of integrated water networks under uncertainty. Comput. Chem. Eng. 32(1–2), 145–160 (2008)CrossRefGoogle Scholar
  118. 118.
    Kim, J., Realff, M.J., Lee, J.H.: Optimal design and global sensitivity analysis of biomass supply chain networks for biofuels under uncertainty. Comput. Chem. Eng. 35(9), 1738–1751 (2011)CrossRefGoogle Scholar
  119. 119.
    Gebreslassie, B.H., Yao, Y., You, F.: Design under uncertainty of hydrocarbon biorefinery supply chains: multiobjective stochastic programming models, decomposition algorithm, and a comparison between CVaR and downside risk. AlChE J. 58(7), 2155–2179 (2012)CrossRefGoogle Scholar
  120. 120.
    Quaglia, A., Sarup, B., Sin, G., Gani, R.: A systematic framework for enterprise-wide optimization: synthesis and design of processing networks under uncertainty. Comput. Chem. Eng. 59, 47–62 (2013)CrossRefGoogle Scholar
  121. 121.
    Tang, M.C., Chin, M.W.S., Lim, K.M., Mun, Y.S., Ng, R.T.L., Tay, D.H.S., Ng, D.K.S.: Systematic approach for conceptual design of an integrated biorefinery with uncertainties. Clean Technol. Environ. Policy 15(5), 783–799 (2013)CrossRefGoogle Scholar
  122. 122.
    Cheali, P., Quaglia, A., Gernaey, K.V., Sin, G.: Effect of market price uncertainties on the design of optimal biorefinery systems—a systematic approach. Ind. Eng. Chem. Res. 53(14), 6021–6032 (2014)CrossRefGoogle Scholar
  123. 123.
    Gong, J., You, F.: Optimal processing network design under uncertainty for producing fuels and value-added bioproducts from microalgae: two-stage adaptive robust mixed integer fractional programming model and computationally efficient solution algorithm. AlChE J. 63(2), 582–600 (2017)CrossRefGoogle Scholar
  124. 124.
    Sy, C.L., Ubando, A.T., Aviso, K.B., Tan, R.R.: Multi-objective target oriented robust optimization for the design of an integrated biorefinery. J. Clean. Prod. 170, 496–509 (2018)CrossRefGoogle Scholar
  125. 125.
    Mulvey, J.M., Vanderbei, R.J., Zenios, S.A.: Robust optimization of large-scale systems. Oper. Res. 43(2), 264–281 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  126. 126.
    Gabrel, V., Murat, C., Thiele, A.: Recent advances in robust optimization: an overview. Eur. J. Oper. Res. 235(3), 471–483 (2014)MathSciNetzbMATHCrossRefGoogle Scholar
  127. 127.
    Rockafellar, R.T., Uryasev, S.: Conditional value-at-risk for general loss distributions. J. Bank. Financ. 26(7), 1443–1471 (2002)CrossRefGoogle Scholar
  128. 128.
    Eppen, G.D., Martin, R.K., Scharge, L.: OR practice—a scenario approach to capacity planning. Oper. Res. 37(4), 517–527 (1989)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKhalifa University of Science and Technology, The Petroleum InstituteAbu DhabiUnited Arab Emirates
  2. 2.Department of Chemical EngineeringUniversity of WaterlooWaterlooCanada

Personalised recommendations