Advertisement

Energy Systems

, Volume 10, Issue 2, pp 415–435 | Cite as

The economical modelling of a distribution system for electricity supply chain

  • Ivan Darma Wangsa
  • Hui Ming WeeEmail author
Original Paper

Abstract

We propose an integrated distribution system model for electricity supply chain. The distribution system consists of a power plant, a transmission substation, a distribution substation and multi-customers. The electricity generated by the power plant is transmitted to the submission and distribution substations, and finally consumed by the customers. We apply the inventory theory to the distribution system model and assume the electricity demand is normally distributed. The objective is to minimize the joint total expected cost (JTEC) incurred by the power plant, transmission substation, distribution substation and multi-customers. The JTEC includes the transmission and the distribution costs, the blackout cost, the energy storage cost, setup/ordering cost, and the production cost. We develop a procedure to derive the optimal solution and the decision variables using differential calculus. The model is tested with an artificially generated data. The results in Fig. 5 show that as JTEC increases, the parameters of the average and standard deviation of electricity demand, power supply rate, length of lead time, capacities of power plant and transmission substation increase. The cost decreases as the blackout ratio and distribution substation capacity increase. The cost is insensitive to the changing electricity consumption time.

Keywords

Economical modelling Electricity power system Inventory model Power blackout cost 

References

  1. 1.
    U.S. Energy Information Administration: Today in Energy [Government report] (2016). https://www.eia.gov/todayinenergy/detail.php?id=12251. Accessed 20 Mar 2017
  2. 2.
    Banbury, J.G.: Distribution-the final link in the electricity-supply chain. Electron. Power 21(13), 773–775 (1975)CrossRefGoogle Scholar
  3. 3.
    Ventosa, M., Baıllo, A., Ramos, A., Rivier, M.: Electricity market modeling trends. Energy Policy 33(7), 897–913 (2005)CrossRefGoogle Scholar
  4. 4.
    Paatero, J.V., Lund, P.D.: A model for generating household electricity load profiles. Int. J. Energy Res. 30(5), 273–290 (2006)CrossRefGoogle Scholar
  5. 5.
    Tolis, A.I., Rentizelas, A.A.: An impact assessment of electricity and emission allowances pricing in optimised expansion planning of power sector portfolios. Appl. Energy 88(11), 3791–3806 (2011)CrossRefGoogle Scholar
  6. 6.
    Tsigkas, A.: Open lean electricity supply communities. Energy Syst. 2(3–4), 407–422 (2011)CrossRefGoogle Scholar
  7. 7.
    Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Syst. 3(3), 221–258 (2012)CrossRefGoogle Scholar
  8. 8.
    Levin, T., Thomas, V.M.: A mixed-integer optimization model for electricity infrastructure development. Energy Syst. 4(1), 79–98 (2013)CrossRefGoogle Scholar
  9. 9.
    Genoese, F., Genoese, M.: Assessing the value of storage in a future energy system with a high share of renewable electricity generation. Energy Syst. 5(1), 19–44 (2014)CrossRefGoogle Scholar
  10. 10.
    Pavković, D., Hoić, M., Deur, J., Petrić, J.: Energy storage systems sizing study for a high-altitude wind energy application. Energy 76, 91–103 (2014)CrossRefGoogle Scholar
  11. 11.
    Schröder, A.: An electricity market model with generation capacity expansion under uncertainty. Energy Syst. 5(2), 253–267 (2014)CrossRefGoogle Scholar
  12. 12.
    Shortle, J., Rebennack, S., Glover, F.W.: Transmission-capacity expansion for minimizing blackout probabilities. IEEE Trans. Power Syst. 29(1), 43–52 (2014)CrossRefGoogle Scholar
  13. 13.
    Belenky, A.S.: A game-theoretic approach to optimizing the scale of incorporating renewable sources of energy and electricity storing systems in a regional electrical grid. Energy Syst. 6(3), 389–415 (2015)CrossRefGoogle Scholar
  14. 14.
    Belenky, A.S.: Finding an optimal strategy of incorporating renewable sources of energy and electricity storing systems in a regional electrical grid. Energy Syst. 6(2), 291–308 (2015)CrossRefGoogle Scholar
  15. 15.
    Fossati, J.P., Galarza, A., Martín-Villate, A., Fontán, L.: A method for optimal sizing energy storage systems for micro grids. Renew. Energy 77, 539–549 (2015)CrossRefGoogle Scholar
  16. 16.
    Heymann, B., Bonnans, J.F., Martinon, P., Silva, F.J., Lanas, F., Jiménez-Estévez, G.: Continuous optimal control approaches to micro grid energy management. Energy Syst. 1–19 (2015).  https://doi.org/10.1007/s12667-016-0228-2
  17. 17.
    Singham, D.I., Cai, W., White, J.A.: Optimal carbon capture and storage contracts using historical \(\text{ CO }_{2}\) emissions levels. Energy Syst. 6(3), 331–360 (2015)CrossRefGoogle Scholar
  18. 18.
    Schneider, M., Biel, K., Pfaller, S., Schaede, H., Rinderknecht, S., Glock, C.H.: Optimal sizing of electricity energy storage systems using inventory models. Energy Procedia 73, 48–58 (2015)CrossRefGoogle Scholar
  19. 19.
    Schneider, M., Biel, K., Pfaller, S., Schaede, H., Rinderknecht, S., Glock, C.H.: Using inventory models for sizing energy storage systems: an interdisciplinary approach. J. Energy Storage 8, 339–348 (2016)CrossRefGoogle Scholar
  20. 20.
    Hug, G.: Integration of optimal storage operation into marginal cost curve representation. Energy Syst. 7(3), 391–409 (2016)CrossRefGoogle Scholar
  21. 21.
    Safiullah, H., Hug, G., Tongia, R.: Design of load balancing mechanism for Indian electricity markets. Energy Syst. 8(2), 309–350 (2017)CrossRefGoogle Scholar
  22. 22.
    Taylor, J.A., Mathieu, J.L., Callaway, D.S., Poolla, K.: Price and capacity competition in balancing markets with energy storage. Energy Syst. 8(1), 169–197 (2017)CrossRefGoogle Scholar
  23. 23.
    Wu, A., Philpott, A., Zakeri, G.: Investment and generation optimization in electricity systems with intermittent supply. Energy Syst. 8(1), 127–147 (2017)CrossRefGoogle Scholar
  24. 24.
    Harris, F.W.: How many parts to make at once. Fact. Mag. Manag. 10(2), 135–136 (1913)Google Scholar
  25. 25.
    Wilson, R.H.: A scientific routine for stock control. Harv. Bus. Rev. 13(1), 116–128 (1934)Google Scholar
  26. 26.
    Baumol, W.J., Vinod, H.D.: An inventory theoretic model of freight transport demand. Manag. Sci. 16(7), 413–421 (1970)CrossRefGoogle Scholar
  27. 27.
    Lee, C.Y.: The economic order quantity for freight discount costs. IIE Trans. 18(3), 318–320 (1986)CrossRefGoogle Scholar
  28. 28.
    Tersine, R.J., Toelle, R.A.: Lot-size determination with quantity discounts. Prod. Inventory Manag. 27(4), 134–137 (1986)Google Scholar
  29. 29.
    Porteus, E.L.: Optimal lot sizing, process quality improvement and setup cost reduction. Oper. Res. 34(1), 137–144 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Hadley, G., Whitin, T.M.: Analysis of Inventory Systems. Prentice Hall, Englewood Cliffs (1963)zbMATHGoogle Scholar
  31. 31.
    Goyal, S.K.: An integrated inventory model for a single supplier-single customer problem. Int. J. Prod. Res. 15(1), 107–111 (1977)CrossRefGoogle Scholar
  32. 32.
    Banerjee, A.: A joint economic-lot-size model for purchaser and vendor. Decis. Sci. 17(3), 292–311 (1986)CrossRefGoogle Scholar
  33. 33.
    Goyal, S.K.: A joint economic-lot-size model for purchaser and vendor: a comment. Decis. Sci. 19(1), 236–241 (1988)CrossRefGoogle Scholar
  34. 34.
    Lu, L.: A one-vendor multi-buyer integrated inventory model. Eur. J. Oper. Res. 81(2), 312–323 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Goyal, S.K.: A one-vendor multi-buyer integrated inventory model: a comment. Eur. J. Oper. Res. 82(1), 209–210 (1995)CrossRefzbMATHGoogle Scholar
  36. 36.
    Hill, R.M.: The single-vendor single-buyer integrated production-inventory model with a generalised policy. Eur. J. Oper. Res. 97(3), 493–499 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Hill, R.M.: The optimal production and shipment policy for the single-vendor single-buyer integrated production-inventory problem. Int. J. Prod. Res. 37(11), 2463–2475 (1999)CrossRefzbMATHGoogle Scholar
  38. 38.
    Liao, C.J., Shyu, C.H.: An analytical determination of lead time with normal demand. Int. J. Oper. Prod. Manag. 11(9), 72–78 (1991)CrossRefGoogle Scholar
  39. 39.
    Ben-Daya, M., Raouf, A.: Inventory models involving lead time as a decision variable. J. Oper. Res. Soc. 45(5), 579–582 (1994)CrossRefzbMATHGoogle Scholar
  40. 40.
    Ouyang, L.Y., Yeh, N.C., Wu, K.S.: Mixture inventory model with backorders and lost sales for variable lead time. J. Oper. Res. Soc. 47(6), 829–832 (1996)CrossRefzbMATHGoogle Scholar
  41. 41.
    Moon, I., Choi, S.: A note on lead time and distributional assumptions in continuous review inventory models. Comput. Oper. Res. 25(11), 1007–1012 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Hariga, M., Ben-Daya, M.: Some stochastic inventory models with deterministic variable lead time. Eur. J. Oper. Res. 113(1), 42–51 (1999)CrossRefzbMATHGoogle Scholar
  43. 43.
    Pan, J.C.H., Yang, J.S.: A study of an integrated inventory with controllable lead time. Int. J. Prod. Res. 40(5), 1263–1273 (2002)CrossRefzbMATHGoogle Scholar
  44. 44.
    Ben-Daya, M., Hariga, M.: Integrated single vendor single buyer model with stochastic demand and variable lead time. Int. J. Prod. Econ. 92(1), 75–80 (2004)CrossRefGoogle Scholar
  45. 45.
    Ouyang, L.Y., Wu, K.S., Ho, C.H.: Integrated vendor-buyer cooperative models with stochastic demand in controllable lead time. Int. J. Prod. Econ. 92(3), 255–266 (2004)CrossRefGoogle Scholar
  46. 46.
    Ouyang, L.Y., Wu, K.S., Ho, C.H.: An integrated vendor-buyer inventory model with quality improvement and lead time reduction. Int. J. Prod. Econ. 108(1), 349–358 (2007)CrossRefGoogle Scholar
  47. 47.
    Pan, J.C.H., Hsiao, Y.C.: Integrated inventory models with controllable lead time and backorder discount considerations. Int. J. Prod. Econ. 93, 387–397 (2005)CrossRefGoogle Scholar
  48. 48.
    Jauhari, W.A., Pujawan, I.N., Wiratno, S.E., Priyandari, Y.: Integrated inventory model for single vendor-single buyer with probabilistic demand. Int. J. Oper. Res. 11(2), 160–178 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Wangsa, I.D., Wee, H.M.: An integrated vendor-buyer inventory model with transportation cost and stochastic demand. Int. J. Syst. Sci. Oper. Logist. (2017).  https://doi.org/10.1080/23302674.2017.1296601 Google Scholar
  50. 50.
    Swenseth, S.R., Buffa, F.P.: Just-in-time: some effects on the logistics function. Int. J. Logist. Manag. 1(2), 25–34 (1990)CrossRefGoogle Scholar
  51. 51.
    Swenseth, S.R., Godfrey, M.R.: Incorporating transportation costs into inventory replenishment decisions. Int. J. Prod. Econ. 77(2), 113–130 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringChung Yuan Christian UniversityChungliTaiwan, ROC

Personalised recommendations