Energy Systems

, Volume 10, Issue 2, pp 461–487 | Cite as

Distributed grid-connected SOFC supporting a multilevel dynamic voltage restorer

  • Abderrahim TelliEmail author
  • Said Barkat
Original Paper


This paper proposes a new configuration of distributed generation system fed by a fuel cell and operating side by side with dynamic voltage restorer (DVR). In this configuration, the solid oxide fuel cell serves the double purpose of injecting power in the grid as well as feeding a DVR, which precludes the need for an extra energy source. Such solution is not only a mean to produce clean energy, but also can participate in the power quality improvement. In order to strengthen the last aspect, multilevel inverters are used in both shunt and series grid connections. The aim of this paper is the modeling and control of the proposed double task system, and showing its grid-friendly behavior. To illustrate its performance, extensive simulation results are carried out under a variety of operating conditions.


Distributed generation system Dynamic voltage restorer Solid fuel oxide cell Multilevel inverter 


  1. 1.
    Erfanmanesh, T., Dehghani, M.: Performance improvement in grid-connected fuel cell power plant: an LPV robust control approach. Electr. Power Energy Syst. 67, 306–314 (2015)CrossRefGoogle Scholar
  2. 2.
    Stewart, E.M., Tumilty, R., Fletcher, J., Lutz, A., Ault, G., McDonald, J.: Analysis of a distributed grid-connected fuel cell during fault conditions. IEEE Trans. Power Syst. 25(1), 497–505 (2010)Google Scholar
  3. 3.
    Matheus, B., de O., e Silva., Jussara, F., Fardin, Lucas F., Encarnação, Rodrigo, F.: Modeling and Grid Connection of a Solid Oxide Fuel Cell (SOFC) Based on P-Q Theory for Stationary Loads, IEEE PES Innovative Smart Grid Technologies, Latin America, (2015)Google Scholar
  4. 4.
    Zambri, N.A., Mohamed, A.: Utilization of fuel cell energy source for distribution power generation: theory, modeling and review of research work. Przegląd Elektrotechniczny 90(5), 189–200 (2014)Google Scholar
  5. 5.
    Xinhong, H., Zhihao, Z., Jin, J.: Fuel cell technology for distributed generation: an overview. Ind Electron IEEE Int Sympos 2(1), 1613–1618 (2006)Google Scholar
  6. 6.
    Braun, R.J., Klein, S.A., Reindl, D.T.: Review of state-of-the-art fuel cell technologies for distributed generation, a technical and marketing analysis. Report, Energy Center of Wisconsin (2000)Google Scholar
  7. 7.
    Wang, C., Nehrir, M.: A physically based dynamic model for solid oxide fuel cells. IEEE Trans. Energy Convers. 22(4), 887–897 (2007)CrossRefGoogle Scholar
  8. 8.
    Saha, A.K., Chowdhury, S., Chowdhury, S.P., Song, Y.H.: Application of solid-oxide fuel cell in distributed power generation. IET Renew. Power Gen. 1(4), 193–202 (2007)CrossRefGoogle Scholar
  9. 9.
    Barreli, L., Bidini, G., Ottaviano, A.: Integration of SOFC/GT hybrid systems in micro-grids. Energy 118, 716–728 (2016)CrossRefGoogle Scholar
  10. 10.
    Matthew, M.M.: Fuel Cell Engines. Wiley, New York (2008)Google Scholar
  11. 11.
    Hajizadeh, A., Golkar, M.A.: Fuzzy neural control of a hybrid fuel cell/battery distributed power generation system. IET Renew. Power Gen. 3(4), 402–414 (2009)CrossRefzbMATHGoogle Scholar
  12. 12.
    Taher, S.A., Mansouri, S.: Optimal PI controller design for active power in grid-connected SOFC DG system. Electr. Power Energy Syst. 60, 268–274 (2014)Google Scholar
  13. 13.
    Rauf, A.M., Khadkikar, V.: Integrated photovoltaic and dynamic voltage restorer system configuration. IEEE Trans. Sustain. Energy 6(2), 400–410 (2015)Google Scholar
  14. 14.
    Sundarabalan, C.K., Selvi, K.: Compensation of voltage disturbances using PEMFC supported dynamic voltage restorer. Electr. Power Energy Syst. 71, 77–92 (2015)CrossRefGoogle Scholar
  15. 15.
    Chandrasekaran, K., Ramachandaramurthy, V.K.: An improved dynamic voltage restorer for power quality improvement. Electr. Power Energy Syst. 82, 354–362 (2016)CrossRefGoogle Scholar
  16. 16.
    Dionísio Barros, J., Fernando Silva, J.: Multilevel optimal predictive dynamic voltage restorer. IEEE Trans. Ind. Electron. 57(8), 2747–2760 (2010)CrossRefGoogle Scholar
  17. 17.
    Reza Khalghani, Mohammad, Ali Shamsi-nejad, Mohammad, Hassan Khooban, Mohammad: Dynamic voltage restorer control using bi-objective optimisation to improve power quality’s indices. IET Sci. Meas. Technol. 8(4), 203–213 (2014)CrossRefGoogle Scholar
  18. 18.
    Bharatiraja, C., Jeevananthan, S., Latha, R.: FPGA based practical implementation of NPC-MLI with SVPWM for an autonomous operation PV system with capacitor balancing. Electr. Power Energy Syst. 61, 489–509 (2014)CrossRefGoogle Scholar
  19. 19.
    Tsengenes, G., Adamidis, G.: A multi-function grid connected PV system with three level NPC inverter and voltage oriented control. Solar Energy 85, 2595–2610 (2011)CrossRefGoogle Scholar
  20. 20.
    Tsengenes, G., Nathenas, T., Adamidis, G.: A three-level space vector modulated grid connected inverter with control scheme based on instantaneous power theory. Simul. Model. Pract. Theory 25, 134–147 (2012)CrossRefGoogle Scholar
  21. 21.
    Saeedifard, M., Iravani, R.: Dynamic performance of a modular multilevel back-to-back HVDC system. IEEE Trans. Power Deliv. 25(4), 2903–2912 (2010)CrossRefGoogle Scholar
  22. 22.
    Nathenas, T., Adamidis, G.: A new approach for SVPWM of a three-level inverter-induction motor fed-neutral point balancing algorithm. Simul. Model. Pract. Theory 29, 1–17 (2012)CrossRefGoogle Scholar
  23. 23.
    Tiwari, H.P., Gupta, Sunil Kumar: DVR based on fuel cell: an innovative back-up system. Int. J. Environ. Sci. Dev. 1(1), 73–78 (2010)CrossRefGoogle Scholar
  24. 24.
    Reza Banaei, M., Reza Dehghanzadeh, A.: A novel z-source based multilevel inverter for renewable sources fed DVR. First IEEE Conf. Power Qual. Tehran, Iran 14–15, 1–6 (2010)Google Scholar
  25. 25.
    Turco, M., Ausiello, A., Micoli, L.: Treatment of Biogas for Feeding High Temperature Fuel Cells, pp. 31–76. Springer, New York (2016)Google Scholar
  26. 26.
    Saeed, A.M., Abdel Aleem, S.H.E., Ibrahim, A.M., Balci, M.E., El-Zahab, E.E.A.: Power conditioning using dynamic voltage restorers under different voltage sag types. J. Adv. Res. 7, 95–103 (2016)Google Scholar
  27. 27.
    Omar, R., Abd Rahim, N., Sulaiman, M.: New control technique applied in dynamic voltage restorer for voltage sag mitigation. Am. J. Eng. Appl. Sci. 3(1), 42–48 (2010)CrossRefGoogle Scholar
  28. 28.
    Rosas-Caro, J.C., Mancilla-David, F., Ramirez-Arredondo, J.M., Bakir, A.M.: Two-switch three-phase ac-link dynamic voltage restorer. IET Power Electron. 5(9), 1754–1763 (2012)CrossRefGoogle Scholar
  29. 29.
    Bouzidi, M., Benaissa, A., Barkat, S., Bouafia, S., Bouzidi, A.: Virtual flux direct power control of the three-level NPC shunt active power filter based on backstepping control Int. J. Syst. Assur. Eng. Manag. 8(2), 287–300 (2017)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire de Génie Électrique, Faculté de TechnologieUniversité de M’silaM’silaAlgeria

Personalised recommendations