Advertisement

Energy Systems

, Volume 10, Issue 2, pp 385–414 | Cite as

An open source tool for reliability evaluation of distribution systems with renewable generators

  • S. Conti
  • S. A. RizzoEmail author
Original Paper

Abstract

Future smart electrical distribution systems could adopt switch remote control and advanced automation systems to operate in autonomous mode (islanding) some portions of the network in order to improve system reliability. In this perspective, a free code able to assess distribution reliability by using analytical or Monte Carlo simulation methods accounting for intentional islanding operation is presented. An effective network representation and data structure, which have led up to the implementation of two automatic and general procedures, are proposed. The procedures share common underlying information in order to speed up calculation. A further merit of the tool is that it enables the user to quickly and simply create the input files. The reliability indices of three distribution networks have been computed by means of the developed software for different scenarios, that is when island mode of operation is not permitted by regulation, and when island mode is permitted (intentional islanding) with the local load either partially or totally supplied by renewable distributed generators. The free code, the input files and the results related to the considered networks are available online at: http://www.dieei.unict.it/users/sconti/psrs.htm.

Keywords

Renewable distributed generation Distribution system reliability Open source software Microgrids Power system simulation Smart grids 

Abbreviations

\(\hbox {CAIDI}\)

Customer average interruption duration index

\(\hbox {CBS}\)

Circuit breaker + sectionalizer

\(\hbox {DG}\)

Distributed generator

\(\hbox {EDN}\)

Electrical distribution network

\(\hbox {LP}\)

Load point

\(\hbox {MCS}\)

Monte Carlo simulation (RMCS Random MCS-SMCS Random MCS)

\(\hbox {MTBF}\)

Mean time between failures

\(\hbox {MTTF}\)

Mean time to failure

\(\hbox {MTTR}\)

Mean time to repair

\(\hbox {MV}\)

Medium voltage

\(\hbox {NB}\)

Number of branches

\(\hbox {PoA}\)

Probability of adequacy

\(\hbox {PS}\)

Primary substation

\(\hbox {SB}\)

Source branch

\(\hbox {SN}\)

Source node

\(\hbox {SAIDI}\)

System average interruption duration index

\(\hbox {SAIFI}\)

System average interruption frequency index

\(\hbox {SOB}\)

Set of branches (they are the branches in a segment)

\(\hbox {SON}\)

Set of nodes (they are the nodes in a segment)

f

Branch failure frequency

\(N_{C}\)

Number of customers

\(t_{AV}\)

Time to be available (it is the time to reconnect the DG units disconnected due to a fault in the network)

\(t_{R}\)

Branch repair time (set to MTTR)

\(t_{S}\)

Sectionalizer switching time

References

  1. 1.
    Billinton, R., Wang, P.: Distribution system reliability cost/worth analysis using analytical and sequential simulation techniques. IEEE Trans. Power Syst. 13, 1245–1250 (1998)CrossRefGoogle Scholar
  2. 2.
    Tippachon, W., Rerkpreedapong, D.: Multiobjective optimal placement of switches and protective devices in electric power distribution systems using ant colony optimization. Electr. Power Syst. Res. 79, 1171–1178 (2009)CrossRefGoogle Scholar
  3. 3.
    Ferreira, D., Bretas, A.S.: A nonlinear binary programming model for electric distribution systems reliability optimization. Int. J. Electr. Power Energy Syst. 43, 384–392 (2012)CrossRefGoogle Scholar
  4. 4.
    Siirto, O., Hyvärinen, M., Loukkalahti, M., Hämäläinen, A., Lehtonen, M.: Improving reliability in an urban network. Electr. Power Syst. Res. 120, 47–55 (2015)CrossRefGoogle Scholar
  5. 5.
    Barabadi, A., Aliyari, M.: Maintenance planning for electricity distribution networks using reliability indices. Int. Rev. Electr. Eng. 10, 646–652 (2015)Google Scholar
  6. 6.
    Ray, S., Bhattacharya, A., Bhattacharjee, S.: Optimal placement of switches in a radial distribution network for reliability improvement. Int. J. Electr. Power Energy Syst. 76, 53–68 (2016)CrossRefGoogle Scholar
  7. 7.
    López, J.C., Lavorato, M., Rider, M.J.: Optimal reconfiguration of electrical distribution systems considering reliability indices improvement. Int. J. Electr. Power Energy Syst. 78, 837–845 (2016)CrossRefGoogle Scholar
  8. 8.
    Popović, Ž., Brbaklić, B., Knežević, S.: A mixed integer linear programming based approach for optimal placement of different types of automation devices in distribution networks. Electr. Power Syst. Res. 148, 136–146 (2017)CrossRefGoogle Scholar
  9. 9.
    Rodríguez-Calvo, A., Cossent, R., Frías P.: Assessing the potential of MV automation for distribution network reliability improvement. Int. Trans. Electr. Energ. Syst. (2017).  https://doi.org/10.1002/etep.2383
  10. 10.
    Balijepalli, N., Venkata, S.S., Christie, R.D.: Predicting distribution system performance against regulatory reliability standards. IEEE Trans. Power Deliv. 19, 350–356 (2004)CrossRefGoogle Scholar
  11. 11.
    Assis, T.M.L., Taranto, G.N., Falcão, D.M., Ferreira, P.M.B., Pontes, C.E.V., Mendonça, L.P.: Pilot field test of intentional islanding in distribution network. Energy Syst. (2015).  https://doi.org/10.1007/s12667-015-0159-3
  12. 12.
    Allan, R.N., Billinton, R., De Oliveira, M.F.: An Efficient algorithm for deducing the minimal cuts and reliability indices of a general network configuration. IEEE Trans. Reliab. R-25, 226–233 (1976)Google Scholar
  13. 13.
    Kjolle, G., Sand, K.: RELRAD-an analytical approach for distribution system reliability assessment. IEEE Trans. Power Deliv. 7, 809–814 (1992)CrossRefGoogle Scholar
  14. 14.
    Billinton, R., Zhang, W.: Algorithm for failure frequency and duration assessment of composite power systems. IEE Proc. Gener. Transm. Distrib. 145, 117–122 (1998)CrossRefGoogle Scholar
  15. 15.
    Billinton, R., Wang, P.: Reliability-network-equivalent approach to distribution-system-reliability evaluation. IEE Proc. Gener. Transm. Distrib. 145, 149–153 (1998)CrossRefGoogle Scholar
  16. 16.
    Koval, D.O.: Zone-branch reliability methodology for analyzing industrial power systems. IEEE Trans. Ind. Appl. 36, 1212–1218 (2000)CrossRefGoogle Scholar
  17. 17.
    Xie, K., Zhou, J., Billinton, R.: Reliability evaluation algorithm for complex medium voltage electrical distribution networks based on the shortest path. IEE Proc. Gener. Transm. Distrib. 150, 686–690 (2003)CrossRefGoogle Scholar
  18. 18.
    Xie, K., Zhou, J., Billinton, R.: Fast algorithm for the reliability evaluation of large-scale electrical distribution networks using the section technique. IEE Proc. Gener. Transm. Distrib. 2, 701–707 (2008)CrossRefGoogle Scholar
  19. 19.
    Liu, Y., Singh, C.: Reliability Evaluation of Composite Power Systems Using Markov Cut-Set Method. IEEE Trans. Power Syst. 25, 777–785 (2010)CrossRefGoogle Scholar
  20. 20.
    Ekonomou, L., Fotis, G.P., Vita, V., Mladenov, V.: Distributed generation islanding effect on distribution networks and end user loads using the master-slave islanding method. J. Power Energy Eng. 4, 1–24 (2016)CrossRefGoogle Scholar
  21. 21.
    Heidari, A., Agelidis, V.G., Zayandehroodi, H., Pou, J., Aghaei, J.: On exploring potential reliability gains under islanding operation of distributed generation. IEEE Trans. Smart Grid 7, 2166–2174 (2016)CrossRefGoogle Scholar
  22. 22.
    Kreishan, M.Z., Fotis, G.P., Vita, V., Ekonomou, L.: Distributed generation islanding effect on distribution networks and end user loads using the load sharing islanding method. Energies (2016).  https://doi.org/10.3390/en9110956
  23. 23.
    Bie, Z., Zhang, P., Li, G., Hua, B., Meehan, M., Wang, X.: Reliability evaluation of active distribution systems including microgrids. IEEE Trans. Power Syst. 27, 2342–2350 (2012)CrossRefGoogle Scholar
  24. 24.
    Ge, S., Xu, L., Liu, H., Zhao, M.: Reliability assessment of active distribution system using Monte Carlo simulation method. J. Appl. Math. (2014).  https://doi.org/10.1155/2014/421347
  25. 25.
    Li, G., Bie, Z., Xie, H., Lin, Y.: Customer satisfaction based reliability evaluation of active distribution networks. Appl. Energy 162, 1571–1578 (2016)CrossRefGoogle Scholar
  26. 26.
    Araújo, J.R., Silva, E.N.M., Rodrigues, A.B., da Silva, M.G.: Assessment of the Impact of microgrid control strategies in the power distribution reliability indices. J. Control Autom. Electr. Syst. 28, 271–283 (2017)CrossRefGoogle Scholar
  27. 27.
    Hashemi-Dezaki, H., Askarian-Abyaneh, H., Shams-Ansari, A., DehghaniSanij, M., Hejazi, M.A.: Direct cyber-power interdependencies-based reliability evaluation of smart grids including wind/solar/diesel distributed generations and plug-in hybrid electrical vehicles. Int. J. Electr. Power Energy Syst. 93, 1–14 (2017)CrossRefGoogle Scholar
  28. 28.
    Moeini-Aghtaie, M., Farzin, H., Fotuhi-Firuzabad, M., Amrollahi, R.: Generalized analytical approach to assess reliability of renewable-based energy hubs. IEEE Trans. Power Syst. 32, 368–377 (2017)CrossRefGoogle Scholar
  29. 29.
    Al-Muhaini, M., Heydt, G.T.: Evaluating future power distribution system reliability including distributed generation. IEEE Trans. Power Deliv. 28, 2264–2272 (2013)CrossRefGoogle Scholar
  30. 30.
    Chen, Y., Zheng, Y., Luo, F., Wen, J., Xu, Z.: Reliability evaluation of distribution systems with mobile energy storage systems. IET Renew. Power Gener. 10, 1562–1569 (2016)Google Scholar
  31. 31.
    Chen, C., Wu, W., Zhang, B., Singh, C.: An analytical adequacy evaluation method for distribution networks considering protection strategies and distributed generators. IEEE Trans. Power Deliv. 30, 1392–1400 (2015)CrossRefGoogle Scholar
  32. 32.
    Conti, S., Rizzo, S.A.: Monte Carlo simulation by using a systematic approach to assess distribution system reliability considering intentional islanding. IEEE Trans. Power Deliv. 30, 64–73 (2015)CrossRefGoogle Scholar
  33. 33.
    Conti, S., Nicolosi, R., Rizzo, S.A.: Generalized systematic approach to assess distribution system reliability with renewable distributed generators and micro-grids. IEEE Trans. Power Deliv. 27(1), 261–270 (2012)CrossRefGoogle Scholar
  34. 34.
    Anderson, K., Du, J., Narayan, A., El Gamal, A.: GridSpice: a distributed simulation platform for the smart grid. IEEE Trans. Ind. Inf. 10, 2354–2363 (2014)CrossRefGoogle Scholar
  35. 35.
    Sijakovic, N., Djuric, M., Kostic, M., Ekonomou, L.: An open source tool for transmission system analysis and planning. Energy Syst. (2014).  https://doi.org/10.1007/s12667-014-0125-5
  36. 36.
    Lazarou, S., Oikonomou, D.S., Ekonomou, L.: A platform for planning and evaluating distributed generation connected to the Hellenic electric distribution grid. In: 11th WSEAS Int. Conf. on Circuits, Systems, Electronics, Control and Signal Processing (CSECS’12), Montreux, Switzerland, pp. 80–86 (2012)Google Scholar
  37. 37.
    Lazarou, S. Vita, V., Karampelas, P., Ekonomou, L.: A power system simulation platform for planning and evaluating distributed generation systems based on GIS. Energy Syst. (2013).  https://doi.org/10.1007/s12667-013-0082-4
  38. 38.
    Morante, Q., Ranaldo, N., Vaccaro, A., Zimeo, E.: Pervasive grid for large-scale power systems contingency analysis. IEEE Trans. Ind. Inf. 2, 165–175 (2006)CrossRefGoogle Scholar
  39. 39.
    PSRS: an open source software tool for reliability evaluation of distribution systems. http://www.dieei.unict.it/users/sconti/psrs.htm. Accessed 30 Nov 2017
  40. 40.
    Allam, M.A., Hamad, A.A., Kazerani, M., El-Saadany, E.F.: A steady-state analysis tool for unbalanced islanded hybrid AC/DC microgrids. Electr. Power Syst. Res. 152, 71–83 (2017)CrossRefGoogle Scholar
  41. 41.
    Shotorbani, A.M., Ghassem-Zadeh, S., Mohammadi-Ivatloo, B., Hosseini, S.H.: A distributed secondary scheme with terminal sliding mode controller for energy storages in an islanded microgrid. Int. J. Electr. Power Energy Syst. 93, 352–364 (2017)CrossRefGoogle Scholar
  42. 42.
    Mokryani, G., Hu, Y.F., Papadopoulos, P., Niknam, T., Aghaei, J.: Deterministic approach for active distribution networks planning with high penetration of wind and solar power. Renew. Energy 113, 942–951 (2017)CrossRefGoogle Scholar
  43. 43.
    Hosseinnezhad, V., Rafiee, M., Ahmadian, M., Siano, P.: Optimal day-ahead operational planning of microgrids. Energy Convers. Manag. 126, 142–157 (2016)CrossRefGoogle Scholar
  44. 44.
    Hutterer, S., Beham, A., Affenzeller, M., Auinger, F., Wagner, S.: Software-enabled investigation in metaheuristic power grid optimization. IEEE Trans. Ind. Inf. 10, 364–372 (2014)CrossRefGoogle Scholar
  45. 45.
    Zhang, Y., Gatsis, N., Giannakis, G.B.: Robust energy management for microgrids with high-penetration renewables. IEEE Sustain. Energy 4, 944–953 (2013)CrossRefGoogle Scholar
  46. 46.
    Arefifar, S.A., Mohamed, Y.A.R.I., El-Fouly, T.H.M.: Supply-adequacy-based optimal construction of microgrids in smart distribution systems. IEEE Trans. Smart Grid 3, 1491–1502 (2012)CrossRefGoogle Scholar
  47. 47.
    Wang, P., Gao, Z., Bertling, L.: Operational adequacy studies of power systems with wind farms and energy storages. IEEE Trans. Power Syst. 27(4), 2377–2384 (2012)CrossRefGoogle Scholar
  48. 48.
    Olivares, D.E., Cañizares, C.A., Kazerani, M.: A centralized energy management system for isolated microgrids. IEEE Trans. Smart Grid 5, 1864–1875 (2014)CrossRefGoogle Scholar
  49. 49.
    Wang, C., Jiao, B., Guo, L., Yuan, K., Sun, B.: Optimal planning of stand-alone microgrids incorporating reliability. J. Mod. Power Syst. Clean Energy 2, 195–205 (2014)CrossRefGoogle Scholar
  50. 50.
    Koh, L.H., Wang, P., Choo, F.H., Tseng, K.J., Gao, Z., Püttgen, H.B.: Operational adequacy studies of a PV-based and energy storage stand-alone microgrid. IEEE Trans. Power Syst. 30, 892–900 (2015)CrossRefGoogle Scholar
  51. 51.
    Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S.: State of the art in research on microgrids: a review. IEEE Access 3, 890–925 (2015)CrossRefGoogle Scholar
  52. 52.
    Conti, S., Faraci, G., La Corte, A., Nicolosi, R., Rizzo, S.A., Schembra, G.: Effect of Islanding and telecontrolled switches on distribution system reliability considering load and green-energy fluctuations. Appl. Sci. (2016).  https://doi.org/10.3390/app6050138
  53. 53.
    Conti, S., Rizzo, S.A.: Probability of adequacy evaluation considering power output correlation of renewable generators in smart grids. Int. J. Electr. Power Energy Syst. 61, 145–151 (2014)CrossRefGoogle Scholar
  54. 54.
    Li, J., Ma, X.Y., Liu, C.C., Schneider, K.P.: Distribution system restoration with microgrids using spanning tree search. IEEE Trans. Power Syst. 29, 3021–3029 (2014)CrossRefGoogle Scholar
  55. 55.
    Jiang, Y., Liu, C.C., Xu, Y.: Smart distribution systems. Energies (2016).  https://doi.org/10.3390/en9040297

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Electrical, Electronics and Computer EngineeringUniversity of CataniaCataniaItaly

Personalised recommendations