Energy Systems

, Volume 9, Issue 4, pp 873–898 | Cite as

Statistical reliability of wind power scenarios and stochastic unit commitment cost

  • Didem Sari
  • Sarah M. Ryan
Original Paper


Probabilistic wind power scenarios constitute a crucial input for stochastic day-ahead unit commitment in power systems with deep penetration of wind generation. To minimize the cost of implemented solutions, the scenario time series of wind power amounts available should accurately represent the stochastic process for available wind power as it is estimated on the day ahead. The high computational demands of stochastic programming motivate a search for ways to evaluate scenarios without extensively simulating the stochastic unit commitment procedure. The statistical reliability of wind power scenario sets can be assessed by approaches extended from ensemble forecast verification. We examine the relationship between the statistical reliability metrics and the results of stochastic unit commitment when implemented solutions encounter the observed available wind power. Lack of uniformity in a mass transportation distance rank histogram can eliminate scenario sets that might lead to either excessive no-load costs of committed units or high penalty costs for violating energy balance when the committed units are dispatched. Event-based metrics can help to predict results of implementing solutions found with the remaining scenario sets.


Wind power scenarios Stochastic unit commitment Reliability Scenario generation 



This manuscript was prepared under award OG-14-014 from the Iowa Energy Center.


  1. 1.
    Zheng, Q.P.P., Wang, J.H., Liu, A.L.: Stochastic optimization for unit commitment—a review. IEEE Trans. Power Syst. 30(4), 1913–1924 (2015)CrossRefGoogle Scholar
  2. 2.
    Gneiting, T., Balabdaoui, F., Raftery, A.E.: Probabilistic forecasts, calibration and sharpness. J. R. Stat. Soc. B 69, 243–268 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Hsu, W.R., Murphy, A.H.: The attributes diagram—a geometrical framework for assessing the quality of probability forecasts. Int. J. Forecast. 2(3), 285–293 (1986). doi: 10.1016/0169-2070(86)90048-8 CrossRefGoogle Scholar
  4. 4.
    Sari, D., Lee, Y., Ryan, S., Woodruff, D.: Statistical metrics for assessing the quality of wind power scenarios for stochastic unit commitment. Wind Energy 19(5), 873–893 (2016)CrossRefGoogle Scholar
  5. 5.
    Ortega-Vazquez, M.A., Kirschen, D.S.: Assessing the impact of wind power generation on operating costs. IEEE Trans. Smart Grid 1(3), 295–301 (2010)CrossRefGoogle Scholar
  6. 6.
    Ummels, B.C., Gibescu, M., Pelgrum, E., Kling, W.L., Brand, A.J.: Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Convers. 22(1), 44–51 (2007)CrossRefGoogle Scholar
  7. 7.
    Tuohy, A., Meibom, P., Denny, E., O’Malley, M.: Unit commitment for systems with significant wind penetration. IEEE Trans. Power Syst. 24(2), 592–601 (2009)CrossRefGoogle Scholar
  8. 8.
    Yang, Y.C., Wang, J.H., Guan, X.H., Zhai, Q.Z.: Subhourly unit commitment with feasible energy delivery constraints. Appl. Energ. 96, 245–252 (2012)CrossRefGoogle Scholar
  9. 9.
    Osorio, G.J., Lujano-Rojas, J.M., Matias, J.C.O., Catalao, J.P.S.: A probabilistic approach to solve the economic dispatch problem with intermittent renewable energy sources. Energy 82, 949–959 (2015)CrossRefGoogle Scholar
  10. 10.
    Ortega-Vazquez, M.A., Kirschen, D.S.: Optimizing the spinning reserve requirements using a cost/benefit analysis. IEEE Trans. Power Syst. 22(1), 24–33 (2007)CrossRefGoogle Scholar
  11. 11.
    Ela, E., O’Malley, M.: Studying the variability and uncertainty impacts of variable generation at multiple timescales. IEEE Trans. Power Syst. 27(3), 1324–1333 (2012)CrossRefGoogle Scholar
  12. 12.
    Zhou, Z., Botterud, A., Wang, J., Bessa, R.J., Keko, H., Sumaili, J., Miranda, V.: Application of probabilistic wind power forecasting in electricity markets. Wind Energy 16(3), 321–338 (2013)CrossRefGoogle Scholar
  13. 13.
    Takriti, S., Birge, J.R., Long, E.: A stochastic model for the unit commitment problem. IEEE Trans. Power Syst. 11(3), 1497–1506 (1996)CrossRefGoogle Scholar
  14. 14.
    Bakirtzis, E.A., Biskas, P.N., Labridis, D.P., Bakirtzis, A.G.: Multiple time resolution unit commitment for short-term operations scheduling under high renewable penetration. IEEE Trans. Power Syst. 29(1), 149–159 (2014)CrossRefGoogle Scholar
  15. 15.
    Papavasiliou, A., Oren, S.S.: Multiarea stochastic unit commitment for high wind penetration in a transmission constrained network. Oper. Res. 61(3), 578–592 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wu, H.Y., Shahidehpour, M.: Stochastic SCUC solution with variable wind energy using constrained ordinal optimization. IEEE Trans. Sustain. Energy 5(2), 379–388 (2014)CrossRefGoogle Scholar
  17. 17.
    Madaeni, S.H., Sioshansi, R.: The impacts of stochastic programming and demand response on wind integration. Energy Syst. 4(2), 109–124 (2013). doi: 10.1007/s12667-012-0068-7 CrossRefGoogle Scholar
  18. 18.
    Bouffard, F., Galiana, F.D.: Stochastic security for operations planning with significant wind power generation. IEEE Trans. Power Syst. 23(2), 306–316 (2008)CrossRefGoogle Scholar
  19. 19.
    Ruiz, P.A., Philbrick, C.R., Zak, E., Cheung, K.W., Sauer, P.W.: Uncertainty management in the unit commitment problem. IEEE Trans. Power Syst. 24(2), 642–651 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, J.D., Wang, J.H., Liu, C., Ruiz, J.P.: Stochastic unit commitment with sub-hourly dispatch constraints. Appl. Energy 105, 418–422 (2013)CrossRefGoogle Scholar
  21. 21.
    Quan, H., Srinivasan, D., Khambadkone, A.M., Khosravi, A.: A computational framework for uncertainty integration in stochastic unit commitment with intermittent renewable energy sources. Appl. Energy 152, 71–82 (2015)CrossRefGoogle Scholar
  22. 22.
    Ela, E., Milligan, M., O’Malley, M.: A flexible power system operations simulation model for assessing wind integration. In: IEEE Power and Energy Society General Meeting, pp. 1–8. San Diego, CA (2011)Google Scholar
  23. 23.
    Papavasiliou, A., Oren, S.S., O’Neill, R.P.: Reserve requirements for wind power integration: a scenario-based stochastic programming framework. IEEE Trans. Power Syst. 26(4), 2197–2206 (2011)CrossRefGoogle Scholar
  24. 24.
    Wang, J., Botterud, A., Bessa, R., Keko, H., Carvalho, L., Issicaba, D., Sumaili, J., Miranda, V.: Wind power forecasting uncertainty and unit commitment. Appl. Energy 88(11), 4014–4023 (2011)CrossRefGoogle Scholar
  25. 25.
    Morales, J.M., Minguez, R., Conejo, A.J.: A methodology to generate statistically dependent wind speed scenarios. Appl. Energy 87(3), 843–855 (2010)CrossRefGoogle Scholar
  26. 26.
    Pinson, P., Madsen, H., Nielsen, H.A., Papaefthymiou, G., Klockl, B.: From probabilistic forecasts to statistical scenarios of short-term wind power production. Wind Energy 12(1), 51–62 (2009)CrossRefGoogle Scholar
  27. 27.
    Pinson, P., Girard, R.: Evaluating the quality of scenarios of short-term wind power generation. Appl. Energy 96, 12–20 (2012)CrossRefGoogle Scholar
  28. 28.
    Gneiting, T., Stanberry, L.I., Grimit, E.P., Held, L., Johnson, N.A.: Assessing probabilistic forecasts of multivariate quantities, with an application to ensemble predictions of surface winds. Test 17(2), 211–235 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wilks, D.S.: The minimum spanning tree histogram as a verification tool for multidimensional ensemble forecasts. Mon. Weather Rev. 132(6), 1329–1340 (2004)CrossRefGoogle Scholar
  30. 30.
    Gombos, D., Hansen, J.A., Du, J., McQueen, J.: Theory and applications of the minimum spanning tree rank histogram. Mon. Weather Rev. 135(4), 1490–1505 (2007)CrossRefGoogle Scholar
  31. 31.
    Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon. Weather Rev. 78(1), 1–3 (1950). doi: 10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2 CrossRefGoogle Scholar
  32. 32.
    Bruninx, K., Dvorkin, Y., Delarue, E., Pandzic, H., D’haeseleer, W., Kirschen, D.S.: Coupling pumped hydro energy storage with unit commitment. IEEE Trans. Sustain. Energy 7(2), 786–796 (2016)CrossRefGoogle Scholar
  33. 33.
    Siface, D., Vespucci, M.T., Gelmini, A.: Solution of the mixed integer large scale unit commitment problem by means of a continuous Stochastic linear programming model. Energy Syst. 5(2), 269–284 (2014). doi: 10.1007/s12667-013-0107-z CrossRefGoogle Scholar
  34. 34.
    Bruninx, K.: Bergh, KVd, Delarue, E., D’haeseleer, W.: Optimization and allocation of spinning reserves in a low-carbon framework. IEEE Trans. Power Syst. 31(2), 872–882 (2016). doi: 10.1109/TPWRS.2015.2430282 CrossRefGoogle Scholar
  35. 35.
    Shukla, A., Singh, S.N.: Clustering based unit commitment with wind power uncertainty. Energy Convers. Manag. 111, 89–102 (2016)CrossRefGoogle Scholar
  36. 36.
    Feng, Y., Ryan, S.M.: Solution sensitivity-based scenario reduction for stochastic unit commitment. CMS 13(1), 29–62 (2016). doi: 10.1007/s10287-014-0220-z MathSciNetCrossRefGoogle Scholar
  37. 37.
    Ji, B., Yuan, X.H., Chen, Z.H., Tian, H.: Improved gravitational search algorithm for unit commitment considering uncertainty of wind power. Energy 67, 52–62 (2014)CrossRefGoogle Scholar
  38. 38.
    Nasri, A., Kazempour, S.J., Conejo, A.J., Ghandhari, M.: Network-constrained AC unit commitment under uncertainty: a Benders’ decomposition approach. IEEE Trans. Power Syst. 31(1), 412–422 (2016)CrossRefGoogle Scholar
  39. 39.
    Cheung, K., Gade, D., Silva-Monroy, C., Ryan, S.M., Watson, J.P., Wets, R.J.B., Woodruff, D.L.: Toward scalable stochastic unit commitment Part 2: solver configuration and performance assessment. Energy Syst. 6(3), 417–438 (2015). doi: 10.1007/s12667-015-0148-6 CrossRefGoogle Scholar
  40. 40.
    Thorarinsdottir, T.L., Scheuerer, M., Heinz, C.: Assessing the calibration of high-dimensional ensemble forecasts using rank histograms. J. Comput. Graph. Stat. 25(1), 105–122 (2016). doi: 10.1080/10618600.2014.977447 MathSciNetCrossRefGoogle Scholar
  41. 41.
    Dupacova, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: an approach using probability metrics. Math. Program. 95(3), 493–511 (2003). doi: 10.1007/s10107-002-0331-0 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, New York (1991)zbMATHGoogle Scholar
  43. 43.
    Rachev, S.T., Rüschendorf, L.: Mass Transportation Problems. Probability and its Applications. Springer, Berlin (1998)zbMATHGoogle Scholar
  44. 44.
    Feng, Y.H., Rios, I., Ryan, S.M., Spurkel, K., Watson, J.P., Wets, R.J.B., Woodruff, D.L.: Toward scalable stochastic unit commitment. Part 1: load scenario generation. Energy Syst. 6(3), 309–329 (2015). doi: 10.1007/s12667-015-0146-8 CrossRefGoogle Scholar
  45. 45.
    Bonneville Power Administration: Wind generation and total load in the BPA balancing authority. Accessed 11 Oct 2017
  46. 46.
    Bonneville Power Administration: Wind power forecasting data. Accessed 11 Oct 2017
  47. 47.
    ISO-New England: Zonal information. Accessed 11 Oct 2017
  48. 48.
    Royset JO, Wets, R.B.: Nonparametric density estimation via exponential epi-eplines: fusion of soft and hard information (2013).
  49. 49.
    Rios, I., Wets, R.J.-B., Woodruff, D.L.: Multi-period forecasting and scenario generation with limited data. CMS 12(2), 267–295 (2015). doi: 10.1007/s10287-015-0230-5 MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Watson, J.-P, Woodruff, D. L.: PYSP user documentation. Accessed 11 Oct 2017

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Industrial and Manufacturing Systems EngineeringIowa State UniversityAmesUSA

Personalised recommendations