Advertisement

Energy Systems

, Volume 7, Issue 2, pp 297–332 | Cite as

Co-optimization of electricity transmission and generation resources for planning and policy analysis: review of concepts and modeling approaches

  • Venkat Krishnan
  • Jonathan Ho
  • Benjamin F. Hobbs
  • Andrew L. Liu
  • James D. McCalley
  • Mohammad Shahidehpour
  • Qipeng P. Zheng
Original Paper

Abstract

The recognition of transmission’s interaction with other resources has motivated the development of co-optimization methods to optimize transmission investment while simultaneously considering tradeoffs with investments in electricity supply, demand, and storage resources. For a given set of constraints, co-optimized planning models provide solutions that have lower costs than solutions obtained from decoupled optimization (transmission-only, generation-only, or iterations between them). This paper describes co-optimization and provides an overview of approaches to co-optimizing transmission options, supply-side resources, demand-side resources, and natural gas pipelines. In particular, the paper provides an up-to-date assessment of the present and potential capabilities of existing co-optimization tools, and it discusses needs and challenges for developing advanced co-optimization models.

Keywords

Co-optimization Transmission expansion planning Generation expansion planning Model fidelity Energy storage Demand response Integrated network uncertainty  Long-term planning AC and DC power flow 

Notes

Acknowledgments

The authors would like to acknowledge the National Association of Regulatory Utility Commissioners (NARUC) for supporting our efforts in writing the whitepaper on co-optimization [23]. The authors are also grateful to Bob Pauley, Doug Gotham, Stan Hadley, and Patrick Sullivan for their comments. Opinions expressed in this paper, however, as well as any errors or omissions, are the authors’ alone.

References

  1. 1.
    Sauma, E.E., Oren, S.S.: Proactive planning and valuation of transmission investments in restructured electricity markets. J. Regul. Econ. 30(3), 261–290 (2006). (358–387)CrossRefGoogle Scholar
  2. 2.
    Krishnan, V., McCalley, J., Lemos, S., Bushnell, J.: Nation-wide transmission overlay design and benefits assessment for the US. Energy Policy (2013). doi: 10.1016/j.enpol.2012.12.051
  3. 3.
    McCalley, J., Krishnan, V., Gkritza, K., Brown, R., Mejia-Giraldo, D.: Planning for long haul- Investment strategies for national energy and transportation infrastructures. IEEE Power Energy Mag. 11(5), 24–35 (2013)CrossRefGoogle Scholar
  4. 4.
    Shahidehpour, M.: Investing in expansion: the many issues that cloud electricity planning. IEEE Power Energy Mag. 2, 14–18 (2004)CrossRefGoogle Scholar
  5. 5.
    Awad, M., Casey, K.E., Geevarghese, A.S., Miller, J.C., Rahimi, A.F., Sheffrin, A.Y., Zhang, M., Toolson, E., Drayton, G., Hobbs, B.F., Wolak, F.A.: Economic assessment of transmission upgrades: application of the California ISO approach, Ch. 7. In: Zhang, X. (ed.) Restructured Electric Power Systems: Analysis of Electricity Markets with Equilibrium Models, Power Engineering Series, pp. 241–270. J. Wiley & Sons/IEEE Press, New York (2010)CrossRefGoogle Scholar
  6. 6.
    Gu, Y., McCalley, J.D., Ni, M.: Coordinating large-scale wind integration and transmission planning. IEEE Trans. Sustain. Energy 3(4), 652–659 (2012)CrossRefGoogle Scholar
  7. 7.
    McCalley, J., Bushnell, J., Krishnan, V., Cano, S.: Transmission design at the national level: benefits, risks and possible paths forward. In: White Paper to PSERC, The Future Grid to Enable Sustainable Energy Systems. http://www.pserc.wisc.edu/research/FutureGrid/broadanalysis.aspx (2012)
  8. 8.
    Roh, J.H., Shahidehpour, M., Fu, Y.: Market-based coordination of transmission and generation capacity planning. IEEE Trans. Power Syst. 22(4), 1406–1419 (2007)CrossRefGoogle Scholar
  9. 9.
    Short, W., et al.: Regional energy deployment system (ReEDS). NREL Technical Report NREL/TP-6A20-46534. http://www.nrel.gov/analysis/reeds/pdfs/reeds_documentation.pdf (2011)
  10. 10.
    van der Weijde, A.H., Hobbs, B.F.: The economics of planning electricity transmission to accommodate renewables: using two-stage optimisation to evaluate flexibility and the cost of disregarding uncertainty. Energy Econ. 34(5), 2089–2101 (2012)CrossRefGoogle Scholar
  11. 11.
    Zheng, Q.P., Liu, A.L.: Transmission and generation capacity expansion with unit commitment: a multiscale stochastic model. Presentation at the INFORMS Annual Meeting (2011)Google Scholar
  12. 12.
    Pfeifenberger, J.P., Hou, D.: Transmission’s true value: adding up the benefits of infrastructure investments. Publ. Util. Fortnightly, 44–50. http://www.fortnightly.com/fortnightly/2012/02/ (2012)
  13. 13.
    Chang, J.W., Pfeifenberger, J.P., Hagerty, J.M.: A WIRES report on the benefits of electric transmission: identifying and analyzing the value of investments. http://www.WIRESgroup.com The Brattle Group (2013)
  14. 14.
    Sauma, E., Oren, S.: Economic criteria for planning transmission investment in restructured electricity markets. IEEE Trans. Power Syst. 22(4), 1394–1405 (2007)CrossRefGoogle Scholar
  15. 15.
    Pozo, D., Contreras, J., Sauma, E.: If you build it, he will come: anticipative power transmission planning. Energy Econ. 36, 135–146 (2013)CrossRefGoogle Scholar
  16. 16.
    Hobbs, B.F.: Regional energy facility location models for power system planning and policy analysis. In: Lev, B., Murphy, F., Bloom, J., Gleit, A. (eds.) Analytic Techniques for Energy Planning, pp. 53–66. North-Holland Press, Amsterdam (1984)Google Scholar
  17. 17.
    Stoll, H.: Least-Cost Electric Utility Planning. John Wiley, New York (1989)Google Scholar
  18. 18.
    International Atomic Energy Agency: Expansion Planning for Electrical Generating Systems: A Guidebook (1984)Google Scholar
  19. 19.
    Wang, X., McDonald, J.: Modern Power System Planning. McGraw Hill Book Company, London (1994)Google Scholar
  20. 20.
    Ventosa, M., Baíllo, Á., Ramos, A., Rivier, M.: Electricity markets modeling trends. Energy Policy 33(7), 897–913 (2005)CrossRefGoogle Scholar
  21. 21.
    Madrigal, M., Stoft, S.: Transmission Expansion for Renewable Energy Scale-Up: Emerging Lessons and Recommendations. World Bank, Washington, DC (2012)CrossRefGoogle Scholar
  22. 22.
    Areiza, J.M., Latorre, G., Cruz, R.D., Villegas, A.: Classification of publications and models on transmission expansion planning. IEEE Trans. Power Syst. 18(02), 938–946 (2003)CrossRefGoogle Scholar
  23. 23.
    Liu, A., Zheng, Q., Ho, J., Krishnan, V., Hobbs, B., Shahidehpour, M., McCalley, J.: Co-optimization of Transmission and Other Supply Resources, NARUC Project No. 3316T5, prepared for the Eastern Interconnection States Planning Council. Available at: http://www.naruc.org/grants/Documents/Co-optimization-White-paper_Final_rv1.pdf (2013). Accessed 1 Sep 2013
  24. 24.
    Khodaei, A., Shahidehpour, M.: Microgrid-based co-optimization of generation and transmission planning in power systems. IEEE Trans. Power Syst. 28(2), 1582–1590 (2013)CrossRefGoogle Scholar
  25. 25.
    Turvey, R., Anderson, D.: Electricity Economics: Essays and Case Studies. Johns Hopkins University Press, Baltimore (1977)Google Scholar
  26. 26.
    Hobbs, B.F., Hu, M., Chen, Y., Ellis, J.H., Paul, A., Burtraw, D., Palmer, K.L.: From regions to stacks: spatial and temporal downscaling of future pollution scenarios for the power sector. IEEE Trans. Power Syst. 25(2), 1179–1189 (2010)CrossRefGoogle Scholar
  27. 27.
    ICF Inc, Integrated Planning Model. http://www.icfi.com/insights/products-and-tools/ipm Fairfax (2013)
  28. 28.
    Sawey, R., Zinn, C.: A mathematical model for long range expansion of generation and transmission in electric utility systems. IEEE Trans. Power Apparatus Syst. 96(2), 657–666 (1977)CrossRefGoogle Scholar
  29. 29.
    Pereira, M., Pinto, L., Cunha, S., Oliveira, G.: A decomposition approach to automated generation/transmission expansion planning. IEEE Trans. Power Apparatus Syst. 104(11), 3074–3083 (1985)CrossRefGoogle Scholar
  30. 30.
    Li, W., Billinton, R.: A minimum cost assessment method for composite generation and transmission system expansion planning. IEEE Trans. Power Syst. 8(2), 628–635 (1993)Google Scholar
  31. 31.
    Alizadeh, B., Jadid, S.: Reliability constrained coordination of generation and transmission expansion planning in power systems using mixed integer programming. IET Gener. Transm. Distrib. 5(9), 948–960 (2011)CrossRefGoogle Scholar
  32. 32.
    Motamedi, A., Zareipour, H., Buygi, M.O., Rosehart, W.D.: A transmission planning framework considering future generation expansions in electricity markets. IEEE Trans. Power Syst. 25(4), 1987–1995 (2010)CrossRefGoogle Scholar
  33. 33.
    Murugan, P., Kannan, S., Baskar, S.: Application of NSGA-II algorithm to single objective transmission constrained generation expansion planning. IEEE Trans. Power Syst. 24(4), 1790–1797 (2009)CrossRefGoogle Scholar
  34. 34.
    Sepasian, M., Seifi, H., Foroud, A., Hatami, A.: A multiyear security constrained hybrid generation-transmission expansion planning algorithm including fuel supply costs. IEEE Trans. Power Syst. 24(3), 1609–1618 (2009)CrossRefGoogle Scholar
  35. 35.
    Baringo, L., Conejo, A.J.: Transmission and Wind Power Investment. IEEE Trans. Power Syst. 27(2), 885–893 (2012)CrossRefGoogle Scholar
  36. 36.
    Tor, O., Guven, A., Shahidehpour, M.: Congestion-driven transmission planning considering the impact of generator expansion. IEEE Trans. Power Syst. 23(2), 781–790 (2008)CrossRefGoogle Scholar
  37. 37.
    Tor, O., Guven, A., Shahidehpour, M.: Promoting the investment on IPPs for optimal grid planning. IEEE Trans. Power Syst. 25(3), 1743–1750 (2010)CrossRefGoogle Scholar
  38. 38.
    Head, W.J., Nguyen, H.V., Kahle, R.L., Bachman, P.A., Jensen, A.A., Watry, S.J.: The procedure used to assess the long range generation and transmission resources in the Mid-Continent Area Power Pool. IEEE Trans. Power Syst. 5(4), 1137–1145 (1990)CrossRefGoogle Scholar
  39. 39.
    Castillo, A., O’Neill, R.P.: Computational performance of solution techniques applied to the ACOPF, Optimal power flow paper-5, FERC staff paper (2013)Google Scholar
  40. 40.
    Model Types, General Algebraic Modeling System (GAMS). http://www.gams.com/modtype/index.htm (2014). Accessed 07 March 2014
  41. 41.
    Zhang, H., Heydt, G.T., Vittal, V., Mittelman, H.D.: Transmission Expansion Planning Using an AC Model: Formulations and Possible Relaxations IEEE PES General Meeting (2012)Google Scholar
  42. 42.
    Jabr, R.: Optimization of AC transmission system planning. IEEE Trans. Power Syst. 28(3), 2779–2787 (2013)CrossRefGoogle Scholar
  43. 43.
    Taylor, J., Hover, F.: Conic AC transmission system planning. IEEE Trans. Power Syst. 28(2), 952–959 (2013)CrossRefGoogle Scholar
  44. 44.
    Bent, R., Coffrin, C., Gumucio, R., van Hentenryck, P.: Transmission Network Expansion Planning: Bridging the Gap between AC Heuristics and DC Approximations. PSCC (2014)Google Scholar
  45. 45.
    Krishnan, V., Liu, H., McCalley, J.D.: Coordinated reactive power planning against power system voltage instability. In: Proceedings of IEEE/PES Power Systems Conference and Expo. (2009)Google Scholar
  46. 46.
    Li, Y., McCalley, J.: Design of a high capacity inter-regional transmission overlay for the U.S. IEEE Trans. Power Syst. 30(1), 513–521 (2015)CrossRefGoogle Scholar
  47. 47.
    Gutman, R., Marchenko, P.P., Dunlop, R.D.: Analytical development of loadability characteristics for EHV and UHV transmission lines. IEEE Trans. Power Apparatus Syst. PAS–98(2), 606–617 (1979)CrossRefGoogle Scholar
  48. 48.
    Quelhas, A.M., Gil, E., McCalley, J.D.: A multiperiod generalized network flow model of the U.S. integrated energy system: Part I-model description. IEEE Trans. Power Syst. 22, 829–836 (2007)CrossRefGoogle Scholar
  49. 49.
    Bertsekas, D.P., Polymenakos, L.C., Tseng, P.: Epsilon-relaxation method for separable convex cost network flow problems. SIAM J. Optim. 7, 853–870 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Ding, J., Somani, A.: Parallel computing solution for capacity expansion network flow optimization problems. J. Comput. 4(7), (2012)Google Scholar
  51. 51.
    McCalley, J., Krishnan, V.: Survey of transmission technologies for planning long distance bulk transmission overlay in US. Int. J. Electr. Power Energy Syst. 54, 559–568 (2014)CrossRefGoogle Scholar
  52. 52.
    Mohitpour, M., Golshan, H., Murray, A.: Pipeline Design and Construction: A Practical Approach, 3rd edn. American Society of Mechanical Engineers (2007)Google Scholar
  53. 53.
    Lamont, A.: User’s guide to the META-Net economic modeling system; version 1.2, Lawrence Livermore National Laboratory, UCRL-ID-122511 (1994)Google Scholar
  54. 54.
    Gabriel, S.A., Conejo, A.J., Fuller, J.D., Hobbs, B.F., Ruiz, C.: Complementarity Modeling in Energy Markets. Springer-Verlag, Berlin (2012)zbMATHGoogle Scholar
  55. 55.
    Lund, H., Kempton, W.: Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 36(9), 3578–3587 (2008)CrossRefGoogle Scholar
  56. 56.
    Krishnan, V., Gonzalez-Marciaga, L., McCalley, J.: A planning model to assess hydrogen as an alternative fuel for national light-duty vehicle portfolio. Energy 73(14), 943–957 (2014)CrossRefGoogle Scholar
  57. 57.
    Connolly, D., Lund, H., Mathiesen, B.V., Leahy, M.: A review of computer tools for analysing the integration of renewable energy into various energy systems. Appl. Energy 87(4), 1059–1082 (2010)CrossRefGoogle Scholar
  58. 58.
    Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.E., Hvelplund, F., Mathiesen, B.V.: 4th Generation District Heating (4GDH). Integrating smart thermal grids into future sustainable energy systems. Energy 68, 1–11 (2014)CrossRefGoogle Scholar
  59. 59.
    Krishnan, V., Das, T., McCalley, J.D.: Impact of short-term storage on frequency response under increasing wind penetration. J. Power Sources (2014)Google Scholar
  60. 60.
    Krishnan, V., Das, T.: Optimal allocation of energy storage in a co-optimized electricity market: Benefits assessment and deriving indicators for economic storage ventures. Energy 81, 175–188 (2015)CrossRefGoogle Scholar
  61. 61.
    Das, T.: Performance and economic evaluation of storage technologies. Ph.D. Dissertation, Iowa State University (2013)Google Scholar
  62. 62.
    Das, T., Krishnan, V., McCalley, J.D.: Incorporating cycling costs in generation dispatch program: an economic value stream for energy storage. Int. J. Energy Res. 38(12), 1551–1561 (2014)CrossRefGoogle Scholar
  63. 63.
    Navid, N., Rosenwald, G.: Market solutions for managing ramp flexibility with high penetration of renewable resource. Sustain. Energy IEEE Trans. 3(4), 784–790 (2012)CrossRefGoogle Scholar
  64. 64.
    Das, T., Krishnan, V., McCalley, J.: High-fidelity dispatch model of storage technologies for production costing studies. IEEE Trans. Sustain. Energy 5(4), 1242–1252 (2014)CrossRefGoogle Scholar
  65. 65.
    Das, T., Krishnan, V., McCalley, J.D.: Assessing the benefits and economics of bulk energy storage technologies in the power grid. Appl. Energy 139, 104–118 (2015)CrossRefGoogle Scholar
  66. 66.
    Krishnan, V., Das, T., Ibanez, E., Lopez, C.A., McCalley, J.D.: Modeling operational effects of wind generation within national long-term infrastructure planning software. IEEE Trans. Power Syst. 28(2), 1308–1317 (2013)CrossRefGoogle Scholar
  67. 67.
    Walawalkar, R., Apt, J., Mancini, R.: Economics of electric energy storage for energy arbitrage and regulation in New York. Energy Policy 35(4), 2558–2568 (2007)CrossRefGoogle Scholar
  68. 68.
    Hedman, K.W., Oren, S.S., O’Neill, R.P.: A review of transmission switching and network topology optimization. In: IEEE Power and Energy Society General Meeting (2011)Google Scholar
  69. 69.
    Grinold, R.C.: Model building techniques for the correction of end effects in multistage convex programs. Oper. Res. 31(3), 407–431 (1983)CrossRefzbMATHGoogle Scholar
  70. 70.
    Krishnan, V., McCalley, J.D.: Building foresight in long-term infrastructure planning using end-effect mitigation models. IEEE Syst. J. PP(99), 1–12 (2015)Google Scholar
  71. 71.
    MISO Transmission Expansion Plan 2012: Appendix E2 EGEAS, Assumptions DocumentGoogle Scholar
  72. 72.
    De Jonghe, C., Hobbs, B.F., Belmans, R.: Optimal generation mix with short-term demand response and wind penetration. IEEE Trans. Power Syst. 27(2), 830–839 (2012)CrossRefGoogle Scholar
  73. 73.
    López, J.A., Ponnambalam, K., Quintana, V.H.: Generation and transmission expansion under risk using stochastic programming. IEEE Trans. Power Syst. 22(3), 1369–1378 (2007)CrossRefGoogle Scholar
  74. 74.
    Roh, J.H., Shahidehpour, M., Wu, L.: Market-based generation and transmission planning with uncertainties. IEEE Trans. Power Syst. 24(3), 1587–1598 (2009)CrossRefGoogle Scholar
  75. 75.
    Mejia-Giraldo, D.: Robust and flexible planning of power system generation capacity. Graduate Theses and Dissertations. Paper 13225. http://lib.dr.iastate.edu/etd/13225 (2013)
  76. 76.
    Pozo, D., Sauma, E., Contreras, J.: A three-level static MILP model for generation and transmission expansion planning. IEEE Trans. Power Syst. 28(1), 202–210 (2013)CrossRefGoogle Scholar
  77. 77.
    Denholm, P., Drury, E., Margolis, R.: The solar deployment system (SolarDS) model: documentation and sample results. Technical Report, NREL/TP-6A2-45832, Sep 2009Google Scholar
  78. 78.
    Krishnan, V., Kastrouni, E., Pyrialakou, D., Gkritza, K., McCalley, J.: An optimization model of energy and transportation systems: assessing the high-speed rail impact in the United States. Transp. Res. Part C: Emerg. Technol. 54, 131–156 (2015)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Venkat Krishnan
    • 1
    • 2
  • Jonathan Ho
    • 3
  • Benjamin F. Hobbs
    • 3
  • Andrew L. Liu
    • 4
  • James D. McCalley
    • 1
  • Mohammad Shahidehpour
    • 5
  • Qipeng P. Zheng
    • 6
  1. 1.Department of Electrical and Computer EngineeringIowa State UniversityAmesUSA
  2. 2.National Renewable Energy LaboratoryGoldenUSA
  3. 3.Department of Geography and Environmental EngineeringJohns Hopkins UniversityBaltimoreUSA
  4. 4.School of Industrial EngineeringPurdue UniversityWest LafayetteUSA
  5. 5.Electrical and Computer Engineering DepartmentIllinois Institute of TechnologyChicagoUSA
  6. 6.Department of Industrial Engineering and Management SystemsUniversity of Central FloridaFloridaUSA

Personalised recommendations