Energy Systems

, Volume 6, Issue 4, pp 551–584 | Cite as

Enhancement of microgrid dynamic responses under fault conditions using artificial neural network for fast changes of photovoltaic radiation and FLC for wind turbine

  • Alireza Rezvani
  • Maziar Izadbakhsh
  • Majid Gandomkar
Original Paper


Microgrid is a low voltage electrical network with distributed generations, energy storage devices and controllable loads. This paper utilizes artificial neural network (ANN) to predict the optimum voltages in order to extract the maximum power and increment the efficiency of photovoltaic system. In this regard, the optimum voltages are achieved by the genetic algorithm (GA). Then these optimum values are used in ANN method. The results of ANN-GA is compared with the other methods that verified the proposed method with high accuracy which can track the maximum power point (MPP) under different insolation and temperature circumstances and also, meet the load demand with less fluctuation around the MPP.; also it can increase the convergence speed to achieve the MPP. As well as, the evaluation of fuzzy logic controller (FLC) in comparison with the PI controller in pitch angle of wind turbine (WT) is carried out. In order to control the output power of wind turbine, by implementing the wind speed and active power as inputs of FLC, it has faster responses, smoother power curves, less oscillation than aforementioned methods which lead to improve the dynamic responses of WT. The models are developed and applied in the Matlab/Simulink program.


Microgrid Photovoltaic MPPT Neural network  Genetic algorithm Wind turbine 


  1. 1.
    Rezvani, A., Gandomkar, M., Izadbakhsh, M., Ahmadi, A.: Environmental/economic scheduling of a micro-grid with renewable energy resources. J. Clean. Prod. 87, 216–226 (2015)CrossRefGoogle Scholar
  2. 2.
    Izadbakhsh, M., Gandomkar, M., Rezvani, A., Ahmadi, A.: Short-term resource scheduling of a renewable energy based micro grid. Renew. Energy 75, 598–606 (2015)CrossRefGoogle Scholar
  3. 3.
    Maknouninejad, A., Lin, W., Harno, H.G., Qu, Z., Simaan, M.A.: Cooperative control for self-organizing microgrids and game strategies for optimal dispatch of distributed renewable generations. Energy Syst. 3(1), 23–60 (2012)CrossRefGoogle Scholar
  4. 4.
    Salas, V., Olias, E., Barrado, A., Lazaro, A.: Review of the maximum power point tracking algorithms for stand-alone photovoltaic systems. Solar Energy Mater. Solar Cells 90(11), 1555–1578 (2006)CrossRefGoogle Scholar
  5. 5.
    Okido, S., Takeda, A.: Economic and environmental analysis of photovoltaic energy systems via robust optimization. Energy Syst. 4(3), 239–266 (2013)CrossRefGoogle Scholar
  6. 6.
    Papanikolaou, N., Christodoulou, C., Loupis, M.: Introducing an improved bidirectional charger concept for modern residential standalone PV systems. Energy Syst. 6(1), 21–41 (2013)CrossRefGoogle Scholar
  7. 7.
    Liu, F.F., Duan, S., Liu, B., Kang, Y.: A variable step size INC MPPT method for PV systems. IEEE Trans. Ind. Electron. 55(7), 622–2628 (2008)Google Scholar
  8. 8.
    Shafy, A., Nafeh, A., Fahmy, F.H., Abou El-Zahab, E.M.: Maximum-power operation of a stand-alone PV system using fuzzy logic control. Int. J. Numer. Model. Electron. Netw. Devices Fields 15(4), 385–398 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Bouchafaa, F., Hamzaoui, I., Hadjammar, A.: Fuzzy logic control for the tracking of maximum power point of a PV system. Energy Proc. 6(1), 152–159 (2011)Google Scholar
  10. 10.
    Veerachary, M., Senjyu, T., Uezato, K.: Neural-network-based maximum-power-point tracking of coupled inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans. Ind. Electron. 50(4), 749–758 (2003)CrossRefGoogle Scholar
  11. 11.
    Rai, A.K., Kaushika, N.D., Singh, B., Agarwal, N.: Simulation model of ANN based maximum power point tracking controller for solar PV system. Solar Energy Mater. Solar Cells 95(2), 773–778 (2011)CrossRefGoogle Scholar
  12. 12.
    Cernazanu, C.: Training neural networks using input data characteristics. Adv. Electr. Comput. Eng. 8(2), 65–70 (2008)CrossRefGoogle Scholar
  13. 13.
    Rezvani, A., Izadbakhsh, M., Gandomkar, M.: Enhancement of hybrid dynamic performance using ANFIS for fast varying solar radiation and fuzzy logic controller in high speeds wind. J. Electr. Syst. 11(1), 11–26 (2015)Google Scholar
  14. 14.
    Esram, T., Chapman, P.L.: Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans. Energy Convers. 22(2), 439–449 (2007)CrossRefGoogle Scholar
  15. 15.
    Abu-Rub, H., Iqbal, A., Ahmed, S.M.: Adaptive neuro-fuzzy inference system-based maximum power point tracking of solar PV modules for fast varying solar radiations. Int. J. Sustain. Energy 31, 383–398 (2012)CrossRefGoogle Scholar
  16. 16.
    Kharb, R.K., Shimi, S.L., Chatterji, S., Ansari, M.F.: Modeling of solar PV module and maximum power point using ANFIS. Renew. Sustain. Energy 2014(33), 602–612 (2014)CrossRefGoogle Scholar
  17. 17.
    Hiyama, T., Kouzuma, S., Imakubo, T., Ortmeyer, T.H.: Evaluation of neural network based real time maximum power tracking controller far PV system. IEEE Trans. Energy Convers. 10(3), 543–548 (1995)CrossRefGoogle Scholar
  18. 18.
    Hiyama, T., Kitabayashi, K.: Neural Network Based Estimation of Maximum Power Generation from PV Module Using Environment Information. IEEE Transaction on Energy Conversion 12(3), 241–247 (1997)CrossRefGoogle Scholar
  19. 19.
    Hajir Karimi, H., Dastranj, J.: artificial neural network-based genetic algorithm to predict natural gas consumption. Energy Syst. 5(3), 571–581 (2014)CrossRefGoogle Scholar
  20. 20.
    Shahat, A.: Maximum power point genetic identification functions for photovoltaic system. Int. J. Res. Rev. Appl. Sci. 3, 335–342 (2010)Google Scholar
  21. 21.
    Vincheh, M.R., Kargar, A., Markadeh, G.A.: A hybrid control method for maximum power point tracking (MPPT) in photovoltaic systems. Arab. J. Sci. Eng. 39(6), 4715–4725 (2014)CrossRefGoogle Scholar
  22. 22.
    Ramaprabha, R., Gothandaraman, V., Kanimozhi, K., Divya, R., Mathur, B.L.: Maximum power point tracking using GA-optimized artificial neural network for Solar PV system. Electrical Energy Systems (ICEES), NewportBeach, pp. 264–268 (2011)Google Scholar
  23. 23.
    Hayatdavudi, M., Saeedimoghadam, M., Nabavi, M.H.: Adaptive Control of Pitch Angle of Wind Turbine using a Novel Strategy for Management of Mechanical Energy Generated by Turbine in Different Wind Velocities. Journal of Electrical Engineering & Technology. 8(4), 863–871 (2013)CrossRefGoogle Scholar
  24. 24.
    Knight, A.M., Peters, G.E.: Simple wind energy controller for an expanded operating range. IEEE Trans. Energy Convers. 20(2), 459–466 (2005)CrossRefGoogle Scholar
  25. 25.
    Li, H., Chen, Z.: Overview of different wind generator systems and their comparisons. IET Renew. Power Gener. 2(2), 123–138 (2007)CrossRefGoogle Scholar
  26. 26.
    Joo, Y., Back, J.: Power regulation of variable speed wind turbines pitch control based on disturbance observer. J. Electr. Eng. Technol. 7(2), 273–280 (2012)CrossRefGoogle Scholar
  27. 27.
    Simoes, M.G., Bose, B.K., Spiegel, R.J.: Fuzzy logic based intelligent control of a variable speed cage machine wind generation system. IEEE Trans. Power Electron. 12(1), 87–95 (1997)CrossRefGoogle Scholar
  28. 28.
    Muhandoa, E.B., Senjyua, T., Kinjob, H., Funabashi, T.: Augmented LQG controller for enhancement of online dynamic performance for WTG system. Renew. Energy 33, 1942–1952 (2008)CrossRefGoogle Scholar
  29. 29.
    Yuan Lo, K., Chen, Y., Chang, Y.: MPPT battery charger for stand-alone wind power system. IEEE Trans. Power Electron. 26(6), 1631–1638 (2011)CrossRefGoogle Scholar
  30. 30.
    Cheung, J.Y.M., Kamal, A.S.: Fuzzy logic control of refrigerant flow. International Conference on Control, USA, pp. 125–130 (1996)Google Scholar
  31. 31.
    Gaurav, N., Kaur, A.: Performance evaluation of fuzzy logic and pid controller by using MATLAB/Simulink. Int. J. Innov. Technol. Explor. Eng. (IJITEE) 1(1), 84–88 (2012)Google Scholar
  32. 32.
    Lingfeng, X., Xiyun, Y., Xinran, L., Daping, X.: Based on adaptive fuzzy sliding mode controller. Intelligent Control and Automation WCICA 7th World Congress, China, pp. 2970–2975 (2008)Google Scholar
  33. 33.
    Amendola, C.A.M., Gonzaga, D.P.: Fuzzy-logic control system of a variable-speed variable-pitch wind-turbine and a double-fed induction generator. Intelligent systems design and applications. Seventh International Conference, Brazil, pp. 252–257 (2007)Google Scholar
  34. 34.
    Senjyu, T., Sakamoto, R., Urasaki, N., Funabashi, T., Sekine, H.: Output power leveling of wind farm using pitch angle control with fuzzy neural network. In: IEEE Power Engineering Society General Meeting, Japan (2006)Google Scholar
  35. 35.
    Van, T.L., Lee, D.C.H.: Output power smoothening of variable—speed wind turbine systems by pitch angle control. Conference on Power and Energy, Ho Chi Minh City, pp. 166–171 (2012)Google Scholar
  36. 36.
    Gaonkar, D.N., Patel, R.N., Pillai, G.N.: Dynamic model of microturbine generation system for grid-connected/islanding operation. IEEE International Conference, pp. 305–310 (2006)Google Scholar
  37. 37.
    Pai, F.: An improved utility interface for microturbine generation system with stand-alone operation capabilities. IEEE Trans. Ind. Electron. 53(5), 1529–1537 (2006)CrossRefGoogle Scholar
  38. 38.
    Qi, H.Y., Yi, F.B., Feng, S.J.: Simulation research on the microgrid with flywheel energy storage system. Power Syst. Prot. Control 39, 83–87 (2011)Google Scholar
  39. 39.
    Zhaoxia, X., Chengshan, W., Shouxiang, W.: Small-signal Stability Analysis of Microgrid Containing Multiple Micro Sources. Autom. Electr. Power Syst. 33(6), 81–85 (2009)Google Scholar
  40. 40.
    Peas Lopes, J.A., Moreira, C., Madureira, A.G.: Defining control strategies for MicroGrids islanded operation. IEEE Trans. Power Syst. 21(2), 916–924 (2006)CrossRefGoogle Scholar
  41. 41.
    Katiraei, F., Irvani, M., Lehn, P.: Micro-grid autonomous operation during and subsequent to islanding process. IEEE Trans. Power 20(1), 248–257 (2005)CrossRefGoogle Scholar
  42. 42.
    Kamel, R.M., Chaouachi, A., Nagasaka, K.: Detailed analysis of micro-grid stability during islanding mode under different load conditions. Engineering 3, 508–516 (2011)CrossRefGoogle Scholar
  43. 43.
    Moradian, M., Tabatabaei, F.M., Moradian, S.: Modeling, control and fault management of microgrids. Smart Grid Renew. Energy 4(1), 99–112 (2013)CrossRefGoogle Scholar
  44. 44.
    Bayat, M., Rahimpour, M.R.: Dynamic optimal analysis of a novel cascade membrane methanol reactor by using genetic algorithm (GA) method. Energy Syst. 4(2), 137–164 (2013)CrossRefGoogle Scholar
  45. 45.
    Arifujjaman, Md.: Modeling, simulation and control of grid connected permanent magnet generator (PMG)-based small wind energy conversion system. Electrical power and energy conference (2010)Google Scholar
  46. 46.
    Rosyadi, M., Muyeen, S.M., Takahashi, R., Tamura, J.: Transient stability enhancement of variable speed permanent magnet wind generator using adaptive pi-fuzzy controller. Power Tech. Conf, Trondheim (2011)Google Scholar
  47. 47.
    Blaabjerg, F., Teodorescu, R., Liserre, M.: Overview of control and grid synchronization for distributed power generation systems. IEEE Trans. Ind. Electron. 53(5), 1398–1409 (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alireza Rezvani
    • 1
  • Maziar Izadbakhsh
    • 1
  • Majid Gandomkar
    • 1
  1. 1.Department of Electrical Engineering, Saveh BranchIslamic Azad UniversitySavehIran

Personalised recommendations