Energy Systems

, Volume 4, Issue 4, pp 315–353 | Cite as

Techno-economic analysis and optimization models for carbon capture and storage: a survey

  • Yuping Huang
  • Steffen Rebennack
  • Qipeng P. Zheng
Review Article

Abstract

Carbon dioxide (\(\hbox {CO}_2\)) emissions are projected to increase significantly during the coming decades if effective environmental policies are not implemented, and the negative impacts of carbon emissions will eventually hinder economic and human development. Carbon capture and storage is proposed to mitigate the global climate change due to the increased concentration of carbon dioxide in the atmosphere. In this article, we focus on the technical developments and economic analysis of carbon capture and storage using optimization models and algorithms. The three main components of carbon capture and storage we discuss are: carbon capture, carbon dioxide transportation and carbon sequestration. In addition, to fulfill carbon dioxide reduction requirements, we also discuss the use of mathematical programming models solving energy expansion planning, \(\hbox {CO}_2\) network design problems and \(\hbox {CO}_2\) storage problems. Through the combination of technical and economic analysis of carbon capture and storage technologies, possible directions for sustainable developments of low-carbon energy economy can be evaluated.

Keywords

CCS Carbon capture Carbon storage \(\hbox {CO}_2\) \(\hbox {CO}_2{\hbox { pipeline network}}\)  Carbon sequestration Techno-economic analysis Energy system expansion planning Mathematical programming Optimization models 

References

  1. 1.
    Newell, R.: Annual energy outlook 2011: reference case. IEA, US Energy Information Administration. Technical Report (2010)Google Scholar
  2. 2.
    Tanaka, N.: CO\(_2\) emissions from fuel combustion. Technical Report, International Energy Agency (2010)Google Scholar
  3. 3.
    NMA.: Status of CCS Development, December 2010 (Online). http://www.nama.org/ccs/ccsprojects.asp
  4. 4.
    Schach, M.-O., Schneider, R., Schramm, H., Repke, J.-U.: Techno-economic analysis of postcombustion processes for the capture of carbon dioxide from power plant flue gas. Eng. Chem. Res. 49, 2363–2370 (2010)CrossRefGoogle Scholar
  5. 5.
    Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., Srivastava, R.: Advances in CO\(_2\) capture technology: the US Department of Energy’s Carbon Sequestration Program. Int. J. Greenhouse Gas Control 2, 9–20 (2008)CrossRefGoogle Scholar
  6. 6.
    Merkel, T.C., Lin, H., Wei, X., Baker, R.: Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membrane Sci 359, 126–139 (2010)CrossRefGoogle Scholar
  7. 7.
    Lenzen, M.: Current state of development of electricity-generating technologiesca literature review. Energies 3, 462–591 (2010)CrossRefGoogle Scholar
  8. 8.
    Davidson, R.: Post-combustion carbon capture from coal fired plants-solvent scrubbing. Technical Report, IEA, US (2007)Google Scholar
  9. 9.
    Zhao, L., Riensche, E., Blum, L., Stolten, D.: Multi-stage gas separation membrane processes used in post-combustion capture: energetic and economic analyses. J. Membrane Sci. 359, 160–172 (2010)CrossRefGoogle Scholar
  10. 10.
    Simmonds, M., Hurst, P.: Post combustion technologies for \(\text{ CO }_2\) capture: a techno-economic overview of selected options. Carbon 44, 1–5 (2005)Google Scholar
  11. 11.
    Pehnt, M., Henkel, J.: Life cycle assessment of carbon dioxide capture and storage from lignite power plants. Int. J. Greenhouse Gas Control 3, 49–66 (2009)CrossRefGoogle Scholar
  12. 12.
    Olajire, A.A.: CO\(_2\) capture and separation technologies for end-of-pipe applications—a review. Int. J. Greenhouse Gas Control 35, 2610–2628 (2010)Google Scholar
  13. 13.
    van Loo, S., van Elk, E.P., Versteeg, G.F.: The removal of carbon dioxide with activated solutions of methyl-diethanol-amine. J. Petroleum Sci. Eng. 55, 396–417 (2007)Google Scholar
  14. 14.
    Kanniche, M., Bouallou, C.: CO\(_2\) capture study in advanced integrated gasification combined cycle. Appl. Thermal Eng. 27, 2693–2702 (2007)CrossRefGoogle Scholar
  15. 15.
    Herzog, H., Meldon, J., Hatton, A.: Advanced post-combustion CO\(_2\) capture. Technical Report, Laboratory for Energy and the Environment, MIT (2009)Google Scholar
  16. 16.
    Yang, H., Xu, Z., Fan, M., Gupta, R., Slimane, R.B., Bland, A.E., Wright, I.: Progress in carbon dioxide separation and capture: a review. J. Environ. Sci. 20, 14–27 (2008)CrossRefGoogle Scholar
  17. 17.
    Gray, M.L., Soong, T.Y., Champagne, K.J., Pennline, H., Baltrus, J.P., Khatri, R., Chuang, S.S.C., Filburn, T.: Improved immobilized carbon dioxide capture sorbents. Fuel Process 86, 1449–1455 (2005)CrossRefGoogle Scholar
  18. 18.
    NETL: Post-combustion sorbents, US Department of Energy. Technical Report, May 2011Google Scholar
  19. 19.
    Scholes, C.A., Smith, K.H., Kentish, S.E., Stevens, G.W.: CO\(_2\) capture from pre-combustion processes: strategies for membrane gas separation. Int. J. Greenhouse Gas Control 4, 739–755 (2010)CrossRefGoogle Scholar
  20. 20.
    Liang, H., Xu, Z., Si, F.: Economic analysis of amine based carbon dioxide capture system with bi-pressure stripper in supercritical coal-fired power plant. Int. J. Greenhouse Gas Control 5, 702C–709C (2011)Google Scholar
  21. 21.
    NETL: DOE/NETL carbon dioxide capture and storage RD &D roadmap. Department of Energy, US. Technical Report (2010)Google Scholar
  22. 22.
    Page, S.C., Williamson, A.G., Mason, I.G.: Carbon capture and storage: fundamental thermodynamics and current technology. Energy Policy 37, 3314–3324 (2009)CrossRefGoogle Scholar
  23. 23.
    Midwest Geological Sequestration Consortium (MGSC): Carbon dioxide capture and transportation options in the Illinois Basin. Technical Report, National Energy Technology Laboratory, DE-FE26-03NT41994 (2004)Google Scholar
  24. 24.
    Pennlinea, H.W., Luebkea, D.R., Jonesa, K.L., Myersa, C.R., Morsib, B.I., Heintzb, Y.J., Ilconichc, J.B.: Progress in carbon dioxide capture and separation research for gasification-based power generation point sources. Fuel Process. Technol. 89, 897–907 (2008)CrossRefGoogle Scholar
  25. 25.
    Amelio, M., Morrone, P., Gallucci, F., Basile, A.: Integrated gasification gas combined cycle plant with membrane reactors: technological and economical analysis. Energy Convers. Manag. 48(10), 2680–2693 (2007)CrossRefGoogle Scholar
  26. 26.
    Franz, J., Scherer, V.: An evaluation of CO\(_2\) selective polymeric membranes for CO\(_2\) separation in IGCC processes. J. Membrane Sci. 359, 173–183 (2010)CrossRefGoogle Scholar
  27. 27.
    Finkenrath, M.: Cost and performance of carbon dioxide capture from power generation. Technical Report, International Energy Agency (2011)Google Scholar
  28. 28.
    Grainger, D., Hägg, M.-B.: Techno-economic evaluation of a PVAm CO\(_2\)-selective membrane in an IGCC power plant with CO\(_2\) capture. Fuel 87, 14–24 (2008)Google Scholar
  29. 29.
    NETL: IEP-oxy-combustion CO\(_2\) emissions control (Online). http://www.netl.doe.gov/technologies/coalpower/ewr/co2/oxy-combustion/near-zero.html
  30. 30.
    Dillon, D.J., Panesar, R.S., Wall, R.A., Allam, R.J., White, V., Gibbins, J., Haines, M.R.: Oxy-combustion processes for CO\(_2\) capture from advanced supercritical PF and NGCC power plant. In: 7th International Conference on Green House Gas Control Technologies. Vancouver, Canada (2004)Google Scholar
  31. 31.
    Nsakala, N., Liljedahl. G.N., Turek, D.: Greenhouse gas emissions control by oxygen firing in circulating fluidized bed boilers: phase 2—pilot scale testing and updated performance and economics for oxygen fired CFB with CO\(_2\) capture. US Department of Energy, Technical Report, DE-FC26-01NT41146 (2004)Google Scholar
  32. 32.
    Jordal, K., Anheden, M., Yan, J., Strömberg, L.: Oxyfuel combustion for coal-fired power generation with CO\(_2\) capture—opportunities and challenges. In: 7th International Conference on Green House Gas Control Technologies. Vancouver, Canada (2004)Google Scholar
  33. 33.
    Rohlfs, W., Madlener, R.: Valuation of ccs-ready coal-fired power plants: a multi-dimensional real options approach. Energy Syst. 2, 243–261 (2011)CrossRefGoogle Scholar
  34. 34.
    US EIA: International energy outlook 2010, May 2010 (Online). http://www.eia.gov/oiaf/ieo/highlights.html
  35. 35.
    Zheng, Q.P., Rebennack, S., Pardalos, P., Pereira, M., Iliadis, N.: Handbook of CO\(_2\) in Power Systems, Ser. Energy Systems. Springer, Berlin (2012)Google Scholar
  36. 36.
    Hashim, H., Douglas, P., Elkamel, A., Croiset, E.: Optimization model for energy planning with CO\(_2\) emission considerations. Ind. Eng. Chem. Res. 44, 879–890 (2005)CrossRefGoogle Scholar
  37. 37.
    Muis, Z.A., Hashim, H., Manan, Z.A., Taha, F.M., Douglas, P.L.: Optimal planning of renewable energy-integrated electricity generation schemes with CO\(_2\) reduction target. Renewable Energy 35, 2562–2570 (2010)CrossRefGoogle Scholar
  38. 38.
    Mirzaesmaeeli, H., Elkamel, A., Douglas, P., Croiset, E., Gupta, M.: A multi-period optimization model for energy planning with CO\(_2\) emission consideration. J. Environ. Manag. 91, 1063–1070 (2010)CrossRefGoogle Scholar
  39. 39.
    Bai, H., Wei, J.-H.: The CO, mitigation options for the electric sector: a case study of Taiwan. Energy Policy 24(3), 221–228 (1996)CrossRefGoogle Scholar
  40. 40.
    Mavrotas, G., Diakoulaki, D., Papayannakis, L.: An energy planning approach based on mixed 0–1 multiple objective linear programming. Int. Trans. Oper. Res. 6, 231–244 (1999)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Tekiner, H., Coit, D.W., Felder, F.A.: Multi-period multi-objective electricity generation expansion planning problem with Monte-Carlo simulation. Electr. Power Syst. Res. 80, 1394–1405 (2010)CrossRefGoogle Scholar
  42. 42.
    Unsihuay-Vila, C., Marangon-Lima, J., de Souza, A.Z., Perez-Arriaga, I.: Multistage expansion planning of generation and interconnections with sustainable energy development criteria: a multiobjective model. Electr. Power Energy Syst. 33, 258C–270 (2011)CrossRefGoogle Scholar
  43. 43.
    Elkamel, A., Hashim, H., Douglas, P.L., Croiset, E.: Optimization of energy usage for fleet-wide power generating system under carbon mitigation options. Am. Inst. Chem. Eng. 55(12), 3168–3190 (2009)Google Scholar
  44. 44.
    Genchi, Y., Saitoh, K., Arashi, N., Yagita, H., Inaba, A.: Assessment of CO\(_2\) emissions reduction potential by using an optimization model for regional energy supply systems. In: Gale, J., Kaya, Y. (ed.) Proceedings of Greenhouse Gas Control Technologies, 2003. 6th International Conference on Greenhouse Gas Control Technologies, Vols. I And II, pp. 919–924. Kyoto, 01–04 Oct (2002)Google Scholar
  45. 45.
    Noonan, R.J.G.F.: Planning electric power generation: a nonlinear mixed integer model employing benders decomposition. Manag. Sci. 23(9), 946–956 (1977)CrossRefMATHGoogle Scholar
  46. 46.
    Zheng, Q.P., Wang, J., Pardalos, P.M., Guan, Y.: A decomposition approach to the two-stage stochastic unit commitment problem. Ann. Oper. Res. 01 (2012). doi:10.1007/s10479-012-1092-7
  47. 47.
    Vandeginste, V., Piessens, K.: Pipeline design for a least-cost router application for CO\(_2\) transport in the CO\(_2\) sequestration cycle. Int. J. Greenhouse Gas Control 2, 571–581 (2008)CrossRefGoogle Scholar
  48. 48.
    Hamelinck, C.N., Faaij, A.P.C., Ruijg, G.J., Jansen, D., Pagnier, H., van Bergen, F., Wolf, K.-H., Barzandji, O., Bruining, H., Schreurs, H.: Potential for CO\(_2\) Sequestration and Enhanced Coalbed Methane Production in the Netherlands. NOVEM Programme, Utrecht (2001)Google Scholar
  49. 49.
    Heddle, G., Herzog, H., Klett, M.: The economics of CO\(_2\) storage. Technical Report, Laboratory for Energy and the Environment, MIT (2003)Google Scholar
  50. 50.
    Bock, B., Goldburg, P.: Economic evaluation of CO\(_2\) storage and sink enhancement options. Technical Report, Electric Power Research Institute (2002)Google Scholar
  51. 51.
    Zhang, Z., Wang, G., Massarotto, P., Rudolph, V.: Optimization of pipeline transport for CO\(_2\) sequestration. Energy Convers. Manag. 47, 702–715 (2006)CrossRefGoogle Scholar
  52. 52.
    McCoy, S.T., Rubin, E.S.: An engineering–economic model of pipeline transport of CO\(_2\) with application to carbon capture and storage. Int. J. Greenhouse Gas Control 2, 219–229 (2008)CrossRefGoogle Scholar
  53. 53.
    Giovanni, E., Richards, K.R.: Determinants of the costs of carbon capture and sequestration for expanding electricity generation capacity. Energy Policy 38, 6026–6035 (2010)CrossRefGoogle Scholar
  54. 54.
    Parfomak, P.W., Folger, P.: Pipelines for carbon dioxide CO\(_2\) control: network needs and cost uncertainties. Congressional Research Service, Technical Report RL34316 (2008)Google Scholar
  55. 55.
    Kuby, M.J., Middleton, R.S., Bielicki, J.M.: Analysis of cost savings from networking pipelines in CCS infrastructure systems. Energy Procedia 4, 2808–2815 (2011)CrossRefGoogle Scholar
  56. 56.
    Middleton, R.S., Kuby, M.J., Bielicki, J.M.: Generating candidate networks for optimization: the CO\(_2\) capture and storage optimization problem. Comput. Environ. Urban Syst. (2011, to appear)Google Scholar
  57. 57.
    Carbon Dioxide Capture and Transportation Options in the Illinois Basin, US Department of Energy, Technical Report, DE-FC26-03NT41994 (2004)Google Scholar
  58. 58.
    Doctor, R., Palmer, A., Coleman, D., Davison, J., Hendriks, C., Kaarstad, O., Ozaki, M.: Transport of CO\(_2\). Intergovernmental Panel on Climate Change Technical Report. IPCC Special Report on Carbon dioxide Capture and Storage (2005)Google Scholar
  59. 59.
    Bakken, B.H., von Streng Velken, I.: Linear models for optimization of infrastructure for CO\(_2\) capture and storage. IEEE Trans. Energy Convers. 23(3), 824–833 (2008)Google Scholar
  60. 60.
    Aspelund, A., Gundersen, T.: A liquefied energy chain for transport and utilization of natural gas for power production with CO\(_2\) capture and storage c- part 4: sensitivity analysis of transport pressures and benchmarking with conventional technology for gas transport. Appl. Energy 86, 815C–825C (2009)CrossRefGoogle Scholar
  61. 61.
    Middleton, R.S.: Optimization for Carbon Capture and Storage (2012)Google Scholar
  62. 62.
    Benson, H.Y., Ogden, J.M., (eds.) Mathematical programming techniques for designing minimum cost pipeline networks for CO\(_2\) sequestration. In: The 6th International Conference on Greenhouse Gas Control Technologies, Kyoto, Japan, 1–4 October (2002)Google Scholar
  63. 63.
    Tan, R.R., Aviso, K.B., Bandyopadhyay, S., Ng, D.K.S.: Optimal source–sink matching in carbon capture and storage systems with time, injection rate, and capacity constraints. Environ. Progress Sustain Energy (2012)Google Scholar
  64. 64.
    Tan, R.R., Aviso, K.B., Bandyopadhyay, S., Ng, D.K.S.: Continuous-time optimization model for source-sink matching in carbon capture and storage systems. Ind. Eng. Chem. Res. 51(30), 10015–10020 (2012)Google Scholar
  65. 65.
    Weihs Fimbres, G.A., Wiley, D.E., Ho, M.: Steady-state optimisation of ccs pipeline networks for cases with multiple emission sources and injection sites: south-east queensland case study. Energy Procedia 4, 2748–2755 (2011)Google Scholar
  66. 66.
    van Bergen, F., Gale, J., Damen, K., Wildenborg, A.: Worldwide selection of early opportunities for CO\(_2\)-enhanced oil recovery and CO\(_2\)-enhanced coal bed methane production. Energy 29, 1611–1621 (2004)CrossRefGoogle Scholar
  67. 67.
    Firoozabadi, A., Cheng, P.: Prospects for subsurface CO\(_2\) sequestration. Am. Inst. Chem. Eng. 56(6), 1398–1405 (2010)CrossRefGoogle Scholar
  68. 68.
    Alvarado, V., Manrique, E.: Enhanced oil recovery: an update review. Energies 3(9), 1529–1575 (2010)CrossRefGoogle Scholar
  69. 69.
    NETL: 2010 Carbon Sequestration Atlas of the United States and Canada, US, Technical Report, Department of Energy (2010)Google Scholar
  70. 70.
    IEAGHG: IEAGHG-RD &D database, December 2010 (Online). http://www.ieaghg.org/index.php?/20100109146/rdad-database.html
  71. 71.
    US EIA: US Crude Oil First Purchase Price, October 2011 (Online). http://www.eia.gov/oog/info/twip/twip
  72. 72.
    US EIA: Annual Energy Outlook 2011 With Projections to 2035, April (2011)Google Scholar
  73. 73.
    Phares, L.: Storing CO\(_2\) with enhanced oil recovery. Technical Report, US Department of Energy, DOE/NETL-402/1312/02-07-08 (2008)Google Scholar
  74. 74.
    Fleten, S.-E., Lien, K., Ljønes, K., Pagés-Bernaus, A., Aaberg, M.: Value chains for carbon storage and enhanced oil recovery: optimal investment under uncertainty. Energy Syst. 37, 457–470 (2010)CrossRefGoogle Scholar
  75. 75.
    Milewska-Duda, J., Duda, J., Nodzeñski, A., Lakatos, J.: Absorption and adsorption of methane and carbon dioxide in hard coal and active carbon. Langumir 16, 5458–5466 (2000)Google Scholar
  76. 76.
    Do, D.D.: Adsorption Analysis: Equilibria and Kinetics. Imperial College Press, London (1998)CrossRefGoogle Scholar
  77. 77.
    Arri, L., Yee, D., Morgan, W., Jeansonne, M.: Modeling coalbed methane production with binary gas sorption. In: Society of Petroleum Engineers. Casper, Wyoming (1992)Google Scholar
  78. 78.
    Law, D.H.S., van der Meer, L.G.H., Gunter, W.D.: Numerical simulator comparison study for enhanced coalbed methane recovery processes, part I: pure carbon dioxide injection. In: Society of Petroleum Engineers. Calgary, Alberta (2002)Google Scholar
  79. 79.
    Pan, Z., Connell, L.D.: Comparison of adsorption models in reservoir simulation of enhanced coalbed methane recovery and CO\(_2\) sequestration in coal. Int. J. Greenhouse Gas Control 3, 77–89 (2009)CrossRefGoogle Scholar
  80. 80.
    US EIA: US Natural Gas Wellhead Price, October 2011 (Online). http://www.eia.gov/dnav/ng/hist/n9190us3A.htm
  81. 81.
    Michael, K., Golab, A., Shulakova, V., Ennis-King, J., Allinson, G., Sharma, S., Aiken, T.: Geological storage of CO\(_2\) in saline aquifers: a review of the experience from existing storage operations. Int. J. Greenhouse Gas Control 4, 659–667 (2010)CrossRefGoogle Scholar
  82. 82.
    Solomon, S., Carpentera, M., Flach, T.A.: Intermediate storage of carbon dioxide in geological formations: a technical perspective. Int. J. Greenhouse Gas Control 2, 502–510 (2008)CrossRefGoogle Scholar
  83. 83.
    Yang, F., Bai, B., Tang, D., Shari, D.-N., David, W.: Characteristics of CO\(_2\) sequestration in saline aquifers. Petroleum Sci. 7(1), 83–92 (2010)CrossRefGoogle Scholar
  84. 84.
    Liao, X., Shangguan, Y.: Numerical simulator comparison study for enhanced coalbed methane recovery processes, part I: pure carbon dioxide injection. In: Power and Energy Engineering Conference. Wuhan, China (2009)Google Scholar
  85. 85.
    Okwen, R.T., Stewart, M.T., Cunningham, J.A.: Analytical solution for estimating storage efficiency of geologic sequestration of CO\(_2\). Int. J. Greenhouse Gas Control 4, 102–107 (2010)CrossRefGoogle Scholar
  86. 86.
    Eccles, J.K., Pratson, L., Newell, R.G., Jackson, R.B.: Physical and economic potential of geological CO\(_2\) storage in saline aquifers. Environ. Sci. Technol. 43(6), 1962–1969 (2009)CrossRefGoogle Scholar
  87. 87.
    van der Zwaan, B., Smekens, K.: CO\(_2\) capture and storage with leakage in an energy-climate model. Environ. Model. Assess. 14, 135–148 (2009)CrossRefGoogle Scholar
  88. 88.
    Chiaramonte, L., Zoback, M.D., Friedmann, J., Stamp, V.: Seal integrity and feasibility of CO\(_2\) sequestration in the teapot dome eor pilot: geomechanical site characterization. Environ. Geol. 54, 1667–1675 (2008)CrossRefGoogle Scholar
  89. 89.
    Qin, X.S., Huang, G.H., Zhang, H., Chakma, A.: An integrated decision support system for management of CO\(_2\) geologic storage in the weyburn field. Petroleum Sci. Technol. 26, 813–843 (2008)CrossRefGoogle Scholar
  90. 90.
    Kopp, A., Binning, P., Johannsen, K., Helmig, R., Class, H.: A contribution to risk analysis for leakage through abandoned wells in geological CO\(_2\) storage. Adv. Water Res. 33, 867–879 (2010)CrossRefGoogle Scholar
  91. 91.
    Zhang, Y., Oldenburg, C.M., Finsterle, S.: Percolation-theory and fuzzy rule-based probability estimation of fault leakage at geologic carbon sequestration sites. Environ. Earth Sci. 59, 1447–1459 (2010)CrossRefGoogle Scholar
  92. 92.
    Huang, Y., Zheng, Q.P., Fan, N., Aminian, K.: Optimal scheduling for enhanced coal bed methane production through CO\(_2\) injection (2013, submitted)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Yuping Huang
    • 1
  • Steffen Rebennack
    • 2
  • Qipeng P. Zheng
    • 3
  1. 1.Department of Industrial Engineering and Management SystemsUniversity of Central FloridaOrlandoUSA
  2. 2.Division of Economics and BusinessColorado School of MinesGoldenUSA
  3. 3.Department of Industrial Engineering and Management SystemsUniversity of Central FloridaOrlandoUSA

Personalised recommendations