Energy Systems

, Volume 4, Issue 3, pp 267–287 | Cite as

Network constraints in techno-economic energy system models: towards more accurate modeling of power flows in long-term energy system models

  • Christoph Nolden
  • Martin Schönfelder
  • Anke Eßer-Frey
  • Valentin Bertsch
  • Wolf Fichtner
Original Paper


Power systems are subject to extensive structural changes as a result of the fact that the share of renewable energies in power supply will increase significantly within the next decades. This requires the transport of large amounts of electricity, e.g. from the North Sea to the large load centres. Moreover, the decentralized installations for the generation of electricity (e.g. PV) need to be integrated in the lower voltage power grids without violating net-safety constraints. As a consequence, the grid load in the system will rise to an extent that is hardly manageable with existing power grid capacities. Therefore, while mostly neglected to date, the importance of considering the power grid in energy system models increases significantly. Within this paper, different examples will be given how network constraints can be considered in techno-economic energy system models with a focus on capacity expansion planning and a long-term time horizon. Firstly, a multi-period linear optimization model will be presented, which comprises the system equations for power generation and transmission. The latter is analyzed with the help of a DC power flow model. Secondly, the usage of an AC power flow modeling tool for a detailed representation of the medium and low voltage power grid will be described. Finally, we will present an illustrative example application of a new mathematical approach for grid modeling in techno-economic energy system models.


Energy systems analysis Technical network constraints  Expansion planning Integration of renewables Load flow models Nodal pricing 


  1. 1.
    Haubrich, H.-J.: Technische Fragen beim Open Market Coupling (OMC). Study funded by the European Federation of Energy Traders and Verband der Elektrizitätswirtschaft e. V., Institut für Elektrische Anlagen und Energiewirtschaft; Forschungsgesellschaft Energie e. V., RWTH Aachen (2006)Google Scholar
  2. 2.
    Shustov, A.: Netzschutz für elektrische Energieversorgungssysteme mit hohem Anteil dezentraler Stromerzeugung. PhD thesis, Universität Kassel (2009)Google Scholar
  3. 3.
    Schönfelder, M., Eßer-Frey, A., Schick, M., Fichtner, W., Heuveline, V., Leibfried, T.: New developments in modeling network constraints in techno-economic energy system expansion planning models. Zeitschrift für Energiewirtschaft 36(1), 27–35 (2012)CrossRefGoogle Scholar
  4. 4.
    Frank, S., Steponavice, I., Rebennack, S.: Optimal power flow: a bibliographic survey I. Energy Systems, in press (2012)Google Scholar
  5. 5.
    Apfelbeck, J.: Simultane Optimierung des Kraftwerks- und Netzausbaus am Beispiel von Deutschland. VDI-Berichte 2080, 29–44 (2009)Google Scholar
  6. 6.
    Dietrich, K., Leuthold, F., Weigt, H.: Will the market get it right? The placing of new power plants in Germany. Zeitschrift für Energiewirtschaft 34, 255–265 (2010)CrossRefGoogle Scholar
  7. 7.
    Eßer, A., Möst, D., Rentz, O.: Long-term power plant investment planning in Baden-Württemberg using a GIS-based nodal pricing approach. In: Proceedings of the 31st IAEE international conference “Bridging energy supply and demand: logistics, competition and environment” (2008)Google Scholar
  8. 8.
    Eßer-Frey, A., Fichtner, W.: Analyzing the regional development of the German power system using a nodal pricing approach. In: Proceedings of the 8th conference on the European electricity market (EEM) (2011)Google Scholar
  9. 9.
    Stamtsis, G., Christensen, J., Erlich, I.: Evaluation of power systems congestion using nodal price analysis. In: Proceedings of the international symposium MEPS, pp. 25–30 (2002)Google Scholar
  10. 10.
    Stigler, H., Todem, C.: Optimization of the Austrian electricity sector (control zone of VERBUND APG) under the constraint of network capacities by nodal pricing. Cent. Eur. J. Oper. Res. 13, 105–125 (2004)Google Scholar
  11. 11.
    Ding, F., Fuller, D.: Nodal, uniform, or zonal pricing: distribution of economic surplus. IEEE Trans. Power Syst. 20(2), 875–882 (2005)CrossRefGoogle Scholar
  12. 12.
    Purchala, K., Meeus, L., Belmans, R.: Zonal network model of European interconnected electricity network (2005)Google Scholar
  13. 13.
    Weigt, H.: A time-variant welfare economic analysis of a nodal pricing mechanism in Germany. In: Proceeding of the 5th conference on applied infrastructure, research (2006)Google Scholar
  14. 14.
    Leuthold, F., Weigt, H., Hirschhausen, Chr v: Efficient pricing for European electricity networks—the theory of nodal pricing applied to feeding-in wind in Germany. Utilities Policy 16, 284–291 (2008)CrossRefGoogle Scholar
  15. 15.
    Handschin, E., Kuhn, S., Rehtanz, C., Schultz, R., Waniek, D.: Optimaler Kraftwerkseinsatz in Netzengpasssituationen. In: Schultz, R., Wagner, H.-J., (eds) Innovative Modellierung und Optimierung von Energiesystemen, chapter 3, pp. 39–68. LIT Verlag Dr. W. Hopf (2009)Google Scholar
  16. 16.
    Duthaler, C.: Europe nodal: a simulation of the European electricity market based on the full network model. In: Second annual conference on competition and regulation in network industries, Center for European Studies (2009)Google Scholar
  17. 17.
    Barth, R., Apfelbeck, J., Vogel, P., Meiborn, P., Weber, C.: Load-flow based market coupling with large-scale wind power in Europe. In: 8th workshop on large-scale integration of wind power into power systems as well as on transmission networks for offshore wind farms (2009)Google Scholar
  18. 18.
    Waniek, D., Rehtanz, C., Handschin, E.: Flow-based evaluation of congestions in the electric power transmission system. In: EEM 2010-7th conference on the European, energy market (2010)Google Scholar
  19. 19.
    Leuthold, F., Weigt, H., Chr. v. Hirschhausen.: A large-scale spatial optimization model of the European electricity market. Networks and spatial economics, pp. 1–31 (2010)Google Scholar
  20. 20.
    Leuthold, F.: Economic engineering modeling of liberalized electricity markets: approaches, algorithms, and applications in the European context. Technische Universität Dresden (Dissertation), Dresden (2010)Google Scholar
  21. 21.
    Weigt, H., Jeske, T., Leuthold, F., Hirschhausen, Chr v: Take the long way down: integration of large-scale North Sea wind using HVDC transmission. Energy Policy 38, 3164–3173 (2010)CrossRefGoogle Scholar
  22. 22.
    Stamtsis, G.: Power transmission cost calculation in deregulated electricity market. Logos, Berlin (2004)Google Scholar
  23. 23.
    Green, R.: Electricity transmission pricing: how much does it cost to get it wrong? CMI Working Paper (2004)Google Scholar
  24. 24.
    Powell, L.: Power system load flow analysis. McGra-Hill, New York (2004)Google Scholar
  25. 25.
    Sun, J., Tesfatsion, L.: DC optimal power flow formulation and solution using QuadProgJ—Department of Economics Working Paper Series, vol. 06014. Iowa State University, Iowa (2006)Google Scholar
  26. 26.
    Murillo-Sánchez, C., Thomas, R.: Thermal unit commitment with a nonlinear AC power flow network model. In Hobbs, et al., (eds) The next generation of electrical power unit commitment models, chapter 5, pp. 75–92. Kluwer Academic Publishers, Dordrecht (2001)Google Scholar
  27. 27.
    Overbye, T., Cheng, X., Sun, Y.: A comparison of the AC and DC power flow models for LMP calculations. In: Proceedings of the 37th Hawai international conference on system science (2004)Google Scholar
  28. 28.
    Enzensberger, N.: Entwicklung und Anwendung eines Strom- und Zertifikatmarktmodells für den europäischen Energiesektor. VDI Verlag, Düsseldorf (2003)Google Scholar
  29. 29.
    Möst, D.: Zur Wettbewerbsfähigkeit der Wasserkraft in liberalisierten Elektrizitätsmärkten—Eine modellgestützte Analyse dargestellt am Beispiel des schweizerischen Energieversorgungssystems. Peter Lang, Frankfurt a.M. (2006)Google Scholar
  30. 30.
    Rosen, J.: The future role of renewable energy sources in European electricity supply: a model-based analysis for the EU-15. Universitätverlag Karlsruhe, Karlsruhe (2007)Google Scholar
  31. 31.
    Schweppe, F., Caraminis, M., Tabor, R., Bohn, R.: Spot pricing of Electricity. Kluver Academic Publishers, New York (1987)Google Scholar
  32. 32.
    Stoft, S.: Power system economics—designing markets for electricity. IEEE-Press, Wiley-Inderscience, New York (2005)Google Scholar
  33. 33.
    UCTE.: Map of the interconnected network of the UCTE. UCTE – printed publications (2006)Google Scholar
  34. 34.
    Kiessling, F., Nefzger, P., Nolasco, J., Kaintzyk, U.: Overhead power lines: planning, design, construction. Springer, Berlin (2003)Google Scholar
  35. 35.
    BMU.: Weiterentwicklung der Ausbaustrategie Erneuerbare Energien—Leitstudie 2008, Bundesministerium für Umwelt. Naturschutz und Reaktorsicherheit, Berlin (2008)Google Scholar
  36. 36.
    EnLAG.: Gesetz zur Beschleunigung des Ausbaus der Höchstspannungsnetze vom 21. August 2009. BGBl, I(55):2870–2876 (2009)Google Scholar
  37. 37.
    IEA.: World energy outlook. International energy agency (2008)Google Scholar
  38. 38.
    Bundesverband WindEnergie e.V. online published data on wind power production (2012) (access: 20.04.2012)
  39. 39.
    Pfeiffer, K., Schwarz, H.: Netzengpässe in Verteilnetzen und technische Lösungsmöglichkeiten. uwf - UmweltWirtschaftsForum 17(4):345–349 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christoph Nolden
    • 1
  • Martin Schönfelder
    • 1
  • Anke Eßer-Frey
    • 1
  • Valentin Bertsch
    • 1
  • Wolf Fichtner
    • 1
  1. 1.Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP), Chair of Energy EconomicsKarlsruheGermany

Personalised recommendations