Advertisement

Energy Systems

, Volume 5, Issue 1, pp 19–44 | Cite as

Assessing the value of storage in a future energy system with a high share of renewable electricity generation

An agent-based simulation approach with integrated optimization methods
  • Fabio Genoese
  • Massimo Genoese
Original Paper

Abstract

Increasing the share of intermittent renewable electricity generation will require additional flexibility in the electricity system. While energy storage can provide such flexibility, studies about the economics of power storage often conclude that there is no business case for large-scale storage applications. In this paper, we present a new approach on how to assess the benefits of energy storage. Key improvements have been made in two areas: Firstly, the agent-based market simulation model PowerACE has been enhanced to make use of optimization methods (MILP) for the unit commitment of the agents, enabling us to quantify the economic benefit of flexibility at supply-agent level. Secondly, we have considerably extended the common unit commitment problem (Carrion and Arroyo, IEEE Trans Power Syst 21(3):1371–1378, 2006), so that we can now model the provision of positive and negative balancing power and the dispatch of storage units. We compare the flexibility offered by thermal power plants to that offered by storage units for the four major German electricity generating companies under two different scenarios. The results for 2030 indicate that it would be more profitable to build up to 4,800 MW storage capacity in the German market rather than investing in flexible combined cycle gas turbine plants or hard coal-fired units. The increasingly fluctuating residual load implies that inflexible power plants will be penalized. Using storage units, the power plants of an existing portfolio can be dispatched in a more efficient way, i.e. with less operation in part load and avoiding start-up or shutdown events.

Keywords

Electricity market Energy storage Optimization Agent-based simulation 

References

  1. 1.
    Bundesnetzagentur: Veröffentlichung Zu- und Rückbau (10/10/2011). http://www.bundesnetzagentur.de/DE/Sachgebiete/ElektrizitaetG
  2. 2.
    Carrion, M., Arroyo, J.: A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans. Power Syst. 21(3), 1371–1378 (2006)CrossRefGoogle Scholar
  3. 3.
    Castronuovo, E.D., Lopes, J.A.A.P.: Optimal operation and hydro storage sizing of a wind-hydro power plant. Int. J. Elec. Power Energy Syst. 26(10), 771–778 (2004)CrossRefGoogle Scholar
  4. 4.
    Connolly, D., Lund, H., Mathiesen, B., Pican, E., Leahy, M.: The technical and economic implications of integrating fluctuating renewable energy using energy storage. Renew. Energy 43, 47–60 (2012)CrossRefGoogle Scholar
  5. 5.
    Deane, J., Ó Gallachóir, B., McKeogh, E.: Techno-economic review of existing and new pumped hydro energy storage plant. Renew. Sustainable Energy Rev. 14(4), 1293–1302 (2010)CrossRefGoogle Scholar
  6. 6.
    Deutsche: Verbundgesellschaft: Das versorgungsgerechte Verhalten thermischer Kraftwerke. Tech. rep, Heidelberg (1991)Google Scholar
  7. 7.
    Ellersdorfer, I., Hundt, M., Sun, N., Voss, A.: Preisbildungsanalyse des deutschen Elektrizitätsmarktes. Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart, Stuttgart, Tech. rep, Heidelberg (2008)Google Scholar
  8. 8.
    Gatzen, C.: The economics of power storage—theory and empirical analysis for central Europe. Oldenbourg Industrieverlag, München (2008)Google Scholar
  9. 9.
    Genoese, F., Genoese, M., Wietschel, M.: Occurrence of negative prices on the German spot market for electricity and their influence on balancing power markets. In: 7th International Conference on the European Energy Market (EEM). Madrid, Spain (2010)Google Scholar
  10. 10.
    Genoese, F., Genoese, M., Wietschel, M.: Medium-term Flexibility Options in a Power Plant Portfolio—Energy Storage Units vs. Thermal Units. In: 9th International Conference on the European Energy Market (EEM). Florence, Italy (2012)Google Scholar
  11. 11.
    Genoese, F., Wietschel, M.: roßtechnische Stromspeicheroptionen im Vergleich. Energiewirtschaftliche Tagesfragen 61(6), 26–31 (2011)Google Scholar
  12. 12.
    Genoese, M.: Energiewirtschaftliche Analysen des deutschen Strommarkts mit agentenbasierter simulation. Nomos Verlagsgesellschaft, Baden-Baden (2010)CrossRefGoogle Scholar
  13. 13.
    Genoese, M., Genoese, F., Fichtner, W.: Model-based analysis of the impact of capacity markets on electricity markets. In: 9th International Conference on the European Energy Market (EEM). Florence, Italy (2012)Google Scholar
  14. 14.
    Genoese, M., Genoese, F., Möst, D., Fichtner, W.:Price spreads in electricity markets: What are fundamental drivers? In: 7th International Conference on the European Energy Market (EEM). Spain, Madrid (2010)Google Scholar
  15. 15.
    Gribik, P., Hogan, W., Pope, S.: Market-clearing electricity prices and energy uplift. Harvard Electricity Policy Group, Cambridge (2007)Google Scholar
  16. 16.
    Hittinger, E., Whitacre, J.F., Apt, J.: Compensating for wind variability using co-located natural gas generation and energy storage. Energy Syst. 1(4), 417–439 (2010)CrossRefGoogle Scholar
  17. 17.
    Hundt, M., Barth, R., Sun, N., Wissel, S., Voss, A.: Verträglichkeit von erneuerbaren Energien und Kernenergie im Erzeugungsportfolio: Technische und ökonomische Aspekte. Tech. rep. Institut für Energiewirtschaft und Rationelle Energieanwendung, Universität Stuttgart, Stuttgart (2009)Google Scholar
  18. 18.
    International Energy Agency: World energy outlook 2010. Organization for Economic Co-operation and Development, Paris (2010)Google Scholar
  19. 19.
    Kaldellis, J., Kapsali, M., Kavadias, K.: Energy balance analysis of wind-based pumped hydro storage systems in remote island electrical networks. Appl. Energy 87(8), 2427–2437 (2010)CrossRefGoogle Scholar
  20. 20.
    Katsaprakakis, D.A., Christakis, D.G., Zervos, A., Papantonis, D., Voutsinas, S.: Pumped storage systems introduction in isolated power production systems. Renew. Energy 33(3), 467–490 (2008)CrossRefGoogle Scholar
  21. 21.
    Korpaas, M., Holen, A.T., Hildrum, R.: Operation and sizing of energy storage for wind power plants in a market system. Int. J. Elec. Power Energy Syst. 25(8), 599–606 (2003)CrossRefGoogle Scholar
  22. 22.
    Möst, D., Genoese, M.: Market power in the German wholesale electricity market. J. Energy Markets 2(2), 47–74 (2009)Google Scholar
  23. 23.
    Möst, D.: Zur Wettbewerbsfhigkeit der Wasserkraft in liberalisierten Elektrizittsmrkten: eine modellgesttzte Analyse dargestellt am Beispiel des schweizerischen Energieversorgungssystems. Peter Lang Verlag, Frankfurt am Main (2006)Google Scholar
  24. 24.
    Nicolosi, M.: Wind power integration and power system flexibility — An empirical analysis of extreme events in Germany under the new negative price regime. Energy Policy 38(11), 7257–7268 (2010)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Nitsch, J., Pregger, T., Scholz, Y., Naegler, T., Sterner, M., Gerhardt, N., von Oehsen, A., Pape, C., Saint-Drenan, Y.M., Wenzel, B.: Langfristszenarien und Strategien für den Ausbau der erneuerbaren Energien in Deutschland bei Berücksichtigung der Entwicklung in Europa und global. Tech. rep, Deutsches Zentrum für Luft- und Raumfahrt DLR, Fraunhofer Institut für Windenergie und Energiesystemtechnik IWES, Ingenieurbüro für neue Energien IFNE, Stuttgart, Kassel, Teltow (2010)Google Scholar
  26. 26.
    Pfluger, B., Wietschel, M.: Impact of renewable energies on investments in conventional power generation technologies and infrastructures from a long-term least-cost perspective. In: 9th International Conference on the European Energy Market (EEM). Florence, Italy (2012)Google Scholar
  27. 27.
    Rangoni, B.: A contribution on the regulation of electricity storage: the case of hydro-pumped storage in Italy and Spain. In: 9th International Conference on the European Energy Market (EEM). Florence, Italy (2012)Google Scholar
  28. 28.
    Schlesinger, M., Lindenberger, D., Lutz, C.: Energieszenarien für ein Energiekonzept der Bundesregierung. Prognos AG, Energiewirtschaftliches Institut an der Universität zu Köln, Gesellschaft für Wirtschaftliche Strukturforschung mbH (GWS), Basel, Köln, Osnabrück (2010)Google Scholar
  29. 29.
    Schubert, G.: Modelling hourly electricity generation from PV and wind plants in Europe. In: 9th International Conference on the European Energy Market (EEM). Florence, Italy (2012).Google Scholar
  30. 30.
    Sensfuß, F., Ragwitz, M., Genoese, M.: The merit-order effect: a detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany. Energy Policy 36(8), 3086–3094 (2008)CrossRefGoogle Scholar
  31. 31.
    Steffen, B.: Prospects for pumped-hydro storage in Germany. Energy Policy 45(6), 420–429 (2012)CrossRefGoogle Scholar
  32. 32.
    Swider, D.J.: Handel an Regelenergie- und Spotmärkten: Methoden zur Entscheidungsunterstützung für Netz- und Kraftwerksbetreiber. Deutscher Universitätsverlag, Wiesbaden (2006)Google Scholar
  33. 33.
    TenneT TSO GmbH: Pre-qualification (24/01/2012). http://www.tennettso.de/site/en/Transparency/publications/ten
  34. 34.
    Ventosa, M., Baillo, A., Ramos, A., Rivier, M.: Electricity market modeling trends. Energy Policy 33(7), 897–913 (2005)CrossRefGoogle Scholar
  35. 35.
    Wasowicz, B., Koopmann, S., Dederichs, T., Schnettler, A., Spaetling, U.: Evaluating regulatory and market frameworks for energy storage deployment in electricity grids with high renewable energy penetration. In: 9th International Conference on the European Energy Market (EEM). Florence, Italy (2012)Google Scholar
  36. 36.
    Weber, C.: Adequate intraday market design to enable the integration of wind energy into the European power systems. Energy Policy 38(7), 3155–3163 (2010)CrossRefGoogle Scholar
  37. 37.
    Wolf, D., Kanngießer, A., Budt, M., Doetsch, C.: Adiabatic Compressed Air Energy Storage co-located with wind energy–multifunctional storage commitment optimization for the German market using GOMES. Energy Syst. 3(2), 181–208 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fraunhofer Institute for Systems and Innovation Research ISIKarlsruheGermany
  2. 2.Karlsruhe Institute of Technology, Chair for Energy EconomicsKarlsruheGermany

Personalised recommendations