Energy Systems

, Volume 2, Issue 2, pp 151–169 | Cite as

Multiobjective evolutionary algorithm for long-term planning of the national energy and transportation systems

Original Paper

Abstract

The transportation and electric sectors are by far the largest producers of greenhouse emissions in the United States while they consume a significant amount of the national energy. The ever rising demand for these systems, the growing public concern on issues like global warming or national security, along with emerging technologies that promise great synergies between both (plug-in hybrid vehicles or electrified rail), creates the necessity for a new framework for long-term planning. This paper presents a comprehensive methodology to investigate long-term investment portfolios of these two infrastructures and their interdependencies. Its multiobjective nature, based on the NSGA-II evolutionary algorithm, assures the discovery of the Pareto front of solutions in terms of cost, sustainability and resiliency. The optimization is driven by a cost-minimization network flow program which is modified in order to explore the solution space. The modular design enables the use of metrics to evaluate sustainability and resiliency and better characterize the objectives that the systems must meet. An index is presented to robustly meet long-term emission reduction goals. An example of a high level representation of the continental United States through 2050 is presented and analyzed using the present methodology.

Keywords

Energy Transportation Long-term investment Multiobjective optimization Evolutionary programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Association of American Railroads: Class I railroad statistics (2008). http://www.aar.org/PubCommon/Documents/AboutTheIndustry/Statistics.pdf
  2. 2.
    Bazaraa, M., Jarvis, J., Sherali, H.: Linear Programming and Network Flows, 2nd edn. Willey, New York (1990). Chap. 12, pp. 587–597 MATHGoogle Scholar
  3. 3.
    Beeck, N.V.: Classification of energy models. Holanda, Tilburg University and Eindhoven University of Technology (1999) Google Scholar
  4. 4.
    Bloom, J.: Solving an electricity generating capacity expansion planning problem by generalized Benders’ decomposition. Oper. Res. 31(1), 84–100 (1983) MATHCrossRefGoogle Scholar
  5. 5.
    Chinchuluun, A., Pardalos, P.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154(1), 29–50 (2007) MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Chinchuluun, A., Pardalos, P., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer, Berlin (2008) MATHGoogle Scholar
  7. 7.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002) CrossRefGoogle Scholar
  8. 8.
    Energy Technology Systems Analysis Programme (ETSAP): MARKAL and TIMES model documentation (2005). http://www.etsap.org/documentation.asp
  9. 9.
    Fankhauser, S.: The social costs of greenhouse gas emissions: An expected value approach. Energy J. 15(2), 157–184 (1994) Google Scholar
  10. 10.
    Geoffrion, AM: Generalized Benders’ decomposition. J. Optim. Theory Appl. 10, 237–260 (1972) MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Gil, E., McCalley, J.: A US energy system model for disruption analysis: evaluating the effects of 2005 hurricanes. IEEE Trans. Power Syst. PP(99) (2011) Google Scholar
  12. 12.
    Ibanez, E., Lavrenz, S., Meja, D., McCalley, J.D., Somani, A.K.: Resiliency and robustness in long-term planning of the national energy and transportation system. In: 2011 EFRI-RESIN Workshop, Tucson, AZ (2011) Google Scholar
  13. 13.
    Marshall, L.: Biofuels and the time value of carbon: Recommendations for GHG accounting protocols (2009). http://www.wri.org/publications
  14. 14.
    McCalley, J., Ibanez, E., Gu, Y., Gkritza, K., Aliprantis, D., Wang, L., Somani, A., Brown, R.: National long-term investment planning for energy and transportation systems (2010). In: Proc. of IEEE PES General Meeting, Minneapolis, MN (2010) Google Scholar
  15. 15.
    Pardalos, P., Resende, M. (eds.): Handbook of Applied Optimization. Oxford University Press, Oxford (2002) MATHGoogle Scholar
  16. 16.
    Quelhas, A., McCalley, J.: A multiperiod generalized network flow model of the U.S. integrated energy system: Part II—simulation results. IEEE Trans. Power Syst. 22(3), 837–844 (2007) CrossRefGoogle Scholar
  17. 17.
    Quelhas, A., Gil, E., McCalley, J., Ryan, S.: A multiperiod generalized network flow model of the U.S. integrated energy system: Part I—Model description. IEEE Trans. Power Syst. 22(3), 829–836 (2007) CrossRefGoogle Scholar
  18. 18.
    Resources for the Future: Comparison of major market-based climate change bills in the 111th congress (2009). http://www.rff.org/wv/Documents/RFF_Major_domestic_bill_comparison_091002.pdf
  19. 19.
    Richards, K.: The social costs of greenhouse gas emissions: An expected value approach. Crit. Rev. Environ. Sci. Technol. 27(1), 279–292 (1997) MathSciNetCrossRefGoogle Scholar
  20. 20.
    Short, W., et al.: The Stochastic Energy Deployment System (SEDS) website (2007). http://seds.nrel.gov/
  21. 21.
    Short, W., Blair, N., Sullivan, P., Mai, T.: ReEDS model documentation: base case data and model description (2009). http://www.nrel.gov/analysis/reeds/pdfs/reeds_full_report.pdf
  22. 22.
    US Bureau of Transportation Statistics: Commodity flow survey united states (1997). http://www.bts.gov/publications/commodity_flow_survey/
  23. 23.
    US Department of Energy: Energy intensity indicators—transportation sector trend data (2004). http://eere.energy.gov/ba/pba/intensityindicators/trend_data.html
  24. 24.
    US Department of Energy: 20% wind energy by 2030—increasing wind energy’s contribution to US electricity supply (2008). http://www.20percentwind.org/20p.aspx?page=Report
  25. 25.
    US Energy Information Administration: The National Energy Modeling System: An overview 2003 (2003). http://www.eia.doe.gov/oiaf/aeo/overview/
  26. 26.
    US Energy Information Administration: Coal news and markets report (2008). http://www.eia.doe.gov/cneaf/coal/page/coalnews/coalmar.html
  27. 27.
    US Energy Information Administration: Forecasts and analysis (2008). http://www.eia.doe.gov/oiaf/forecasting.html
  28. 28.
    US Energy Information Administration: Form EIA-411, coordinated bulk power supply program report (2008). http://www.eia.doe.gov/cneaf/electricity/page/eia411/eia411.html
  29. 29.
    US Energy Information Administration: Inventory of US greenhouse gas emissions and sinks: 1990–2008 (2010). http://epa.gov/climatechange/emissions/usinventoryreport.html
  30. 30.
    US Government: United States Federal Budget for Fiscal Year 2010, A New Era of Responsibility: Renewing America’s Promise (2009). http://www.gpoaccess.gov/usbudget/fy10/

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringIowa State UniversityAmesUSA

Personalised recommendations