Advertisement

Energy Systems

, Volume 1, Issue 3, pp 273–289 | Cite as

Numerical methods for on-line power system load flow analysis

  • Siddhartha Kumar KhaitanEmail author
  • James D. McCalley
  • Mandhapati Raju
Original Paper

Abstract

Newton-Raphson method is the most widely accepted load flow solution algorithm. However LU factorization remains a computationally challenging task to meet the real-time needs of the power system. This paper proposes the application of very fast multifrontal direct linear solvers for solving the linear system sub-problem of power system real-time load flow analysis by utilizing the state-of-the-art algorithms for ordering and preprocessing. Additionally the unsymmetric multifrontal method for LU factorization and highly optimized Intel® Math Kernel Library BLAS has been used. Two state-of-the-art multifrontal algorithms for unsymmetric matrices namely UMFPACK V5.2.0 and sequential MUMPS 4.8.3 (“Multifrontal Massively Parallel Solver”) are customized for the AC power system Newton-Raphson based load flow analysis. The multifrontal solvers are compared against the state-of-the-art sparse Gaussian Elimination based HSL sparse solver MA48. This study evaluates the performance of above multifrontal solvers in terms of number of factors, computational time, number of floating-point operations and memory, in the context of load flow solution on nine systems including very large real power systems. The results of the performance evaluation are reported. The proposed method achieves significant reduction in computational time.

Keywords

Load flow analysis Linear solvers Multifrontal methods MUMPS UMFPACK MA48 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Powell, L.: Power System Load Flow Analysis. McGraw-Hill, New York (2004) Google Scholar
  2. 2.
    Khaitan, S., McCalley, J., Chen, Q.: Multifrontal solver for online power system time domain simulation. IEEE Trans. Power Syst. 23, 4 (2008) CrossRefGoogle Scholar
  3. 3.
    Orfanogianni, T., Bacher, R.: Using automatic code differentiation in power flow algorithms. IEEE Trans. Power Syst. 14, 1 (1999) CrossRefGoogle Scholar
  4. 4.
    Davis, T., Duf, I.: UMFPACK version 2.0: unsymmetric-pattern multifrontal package (1995). See: http://www.cis.ufl.edu/-davis
  5. 5.
    Davis, T., Duff, I.: A combined unifrontal/multifrontal method for unsymmetric sparse matrices. ACM Trans. Math. Softw. 25, 1–19 (1997) CrossRefMathSciNetGoogle Scholar
  6. 6.
    Davis, T.: Algorithm 832: UMFPACK—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. 30, 196–199 (2004) zbMATHCrossRefGoogle Scholar
  7. 7.
    Davis, T.: A column pre-ordering strategy for the unsymmetric-pattern multi-frontal method. ACM Trans. Math. Softw. 30, 165–195 (2004) zbMATHCrossRefGoogle Scholar
  8. 8.
    Davis, T., Amestoy, P., Duff, I.: Algorithm 837: AMD, an approximate minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 381–388 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Davis, T., Gilbert, J., Larimore, E.: Algorithm 836: COLAMD, an approximate column minimum degree ordering algorithm. ACM Trans. Math. Softw. 30, 377–380 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Ashcraft, C., Grimes, R.: The influence of relaxed supernode partitions on the multifrontal method. ACM Trans. Math. Softw. 15, 291–309 (1989) zbMATHCrossRefGoogle Scholar
  11. 11.
    Heath, M., Raghavan, P.: A Cartesian parallel nested dissection algorithm. SIAM J. Matrix Anal. Appl. 16, 235–253 (1995) zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gupta, A., Gustavson, F., Joshi, M., Karypis, G., Kumar, V.: PSPASES: an efficient and parallel sparse direct solver. In: Yang, T. (ed.) Kluwer Int. Series in Engineering and Science, vol. 515. Kluwer Academic, Dordrecht (1999) Google Scholar
  13. 13.
    Johnson, J., Vachranukunkiet, P., Tiwari, S., Nagvajara, P., Nwankpa, C.: Performance analysis of loadflow computation using FPGA. In: Proc. of 15th Power Systems Computation Conference 2005 Google Scholar
  14. 14.
    Zaoui, F., Fliscounakis, S.: A direct approach for the security constrained optimal power flow problem. In: Power Systems Conference and Exposition 2006 Google Scholar
  15. 15.
    Amestoy, P., Duff, I.: Vectorization of a multiprocessor multifrontal code. Int. J. Supercomput. Appl. 3, 41–59 (1989) CrossRefGoogle Scholar
  16. 16.
    Amestoy, P., Duff, I., L’Excellent, J., Koster, J.: A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix Anal. Appl. 23, 15–41 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Amestoy, P., Puglisi, C.: An unsymmetrized multifrontal LU factorization. SIAM J. Matrix Anal. Appl. 24, 553–569 (2002) zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Amestoy, P., Duff, I., Puglisi, C.: Multifrontal QR factorization in a multiprocessor environment. Numer. Linear Algebra Appl. 3, 275–300 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Duff, I., Reid, J.: The multifrontal solution of indefinite sparse symmetric linear systems. ACM Trans. Math. Softw. 9, 302–325 (1983) zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Duff, I., Reid, J.: The multifrontal solution of unsymmetric sets of linear systems. SIAM J. Sci. Stat. Comput. 5, 633–641 (1984) zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Guermouche, A., L’Excellent, J.-Y.: Constructing memory-minimizing schedules for multifrontal methods. ACM Trans. Math. Softw. 32(1), 17–32 (2006) CrossRefMathSciNetGoogle Scholar
  22. 22.
    Karypis, G., Kumar, V.: METIS—A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices—Version 4.0. University of Minnesota (1998) Google Scholar
  23. 23.
    Schulze, J.: Towards a tighter coupling of bottom-up and top-down sparse matrix ordering methods. BIT 41(4), 800–841 (2001) zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Pellegrini, F.: SCOTCH 5.0 User’s guide. Technical Report, LaBRI, Université Bordeaux I (August 2007) Google Scholar
  25. 25.
    Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17, 886–905 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Richardy, G.: Coupling MUMPS and ordering software. CERFACS report WN/PA/02/24 (January 2002) Google Scholar
  27. 27.
    Dongarra, J., Du Croz, J., Hammarling, S.: A set of level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16, 1–17 (1990) zbMATHCrossRefGoogle Scholar
  28. 28.
    Duff, I.S., Reid, J.K.: The design of MA48, a code for the direct solution of sparse unsymmetric linear systems of equations. ACM Trans. Math. Softw. 22, 187–226 (1996) zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Li, X.: Direct solvers for sparse matrices. Available online http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf (2006)
  30. 30.
    Liu, J.: The multifrontal method for sparse matrix solution: theory and practice. SIAM Rev. 34, 82–109 (1992) zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Snir, M., Otto, S.W., Huss-Lederman, S., Walker, D.W., Dongarra, J.: MPI: The Complete Reference. MIT Press, Cambridge (1996) Google Scholar
  32. 32.
    Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Dongarra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.: ScaLAPACK Users’ Guide. SIAM Press, Philadelphia (1997) zbMATHGoogle Scholar
  33. 33.
    Gupta, A.: Recent advances in direct methods for solving unsymmetric sparse systems of linear equations. IBM Research Report, RC 22039 (98933) April 20 (2001) Google Scholar
  34. 34.
    The reliability test system task force of the application of probability methods subcommittee. IEEE reliability test system. IEEE Trans. Power Apparatus Syst. PAS-98, 2047–2045 (1979) Google Scholar
  35. 35.
    The reliability test system task force of the application of probability methods subcommittee. The IEEE reliability test system—1996. IEEE Trans. Power Syst. 14(3), 1010–1018 (1999) Google Scholar
  36. 36.
  37. 37.
  38. 38.
    Nanda, J., Lai, L.L., Ma, J.T., Rajkumar, N., Nanda, A., Prasad, M.: A novel approach to computational efficient algorithms for transmission loss and line flow formulations. Int. J. Electr. Power Energy Syst. 555–560 (1999) Google Scholar
  39. 39.
    Li, M., Zhao, Q., Luh, P.B.: Decoupled load flow and its feasibility in systems with dynamic topology. In: PES’09, 26–30 July 2009, pp. 1–8 (2009) Google Scholar
  40. 40.
    Jean-Jumeau, R., Chiang, H.-D.: Parameterizations of the load-flow equations for eliminating ill-conditioning load flow solutions. IEEE Trans. Power Syst. 3(3), 1004–1012 (1993) CrossRefGoogle Scholar
  41. 41.
    Dasgupta, K., Swarup, K.S.: Distributed fast decoupled load flow analysis. In: POWERCON, pp. 1–6 (2008) Google Scholar
  42. 42.
    Nanda, J., Bijwe, P.R., Henry, J., Bapi Raju, V.: General purpose fast decoupled power flow. IEE Proc. Gen. Trans. Dist. 139(2), 87–92 (1992) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Siddhartha Kumar Khaitan
    • 1
    Email author
  • James D. McCalley
    • 1
  • Mandhapati Raju
    • 2
  1. 1.Department of Electrical and Computer EngineeringIowa State UniversityIowaUSA
  2. 2.Optimal Inc.PlymouthUSA

Personalised recommendations