Energy Systems

, Volume 1, Issue 2, pp 197–207 | Cite as

Space weather influence on power systems: prediction, risk analysis, and modeling

  • Vitaliy Yatsenko
  • Nikita Boyko
  • Steffen Rebennack
  • Panos M. Pardalos
Original Paper
  • 61 Downloads

Abstract

This paper concentrates on dynamic probabilistic risk analysis of optical elements with complex characterizations for damages using a physical model of solid state lasers and a predictable level of ionizing radiation and space weather. Focusing is given mainly on a solid-state laser model, mathematical models for dynamic probabilistic risk assessment and software for the modeling and prediction of ionizing radiation. The probabilistic risk assessment method for solid-state lasers is presented considering some deterministic and stochastic factors. Probabilistic risk assessment is a comprehensive, structured, and logical analysis method aimed at identifying and assessing risks in solid-state lasers in order to cost-effectively improve their safety and performance. This method is based on the Conditional Value-at-Risk (CVaR) and on the expected loss exceeding Value-at-Risk (VaR). We propose a new dynamical-information approach for the radiation damage risk assessment of laser elements affected by space radiation. Our approach includes the following steps: laser modeling, modeling ionizing radiation influences on laser elements, probabilistic risk assessment methods, and risk minimization techniques. Black-box models of space ionizing radiation influences on laser elements are developed for risk assessment in laser safety analysis. The mathematical model’s inputs are the radiation influences on laser systems and the output parameters are dynamic characteristics of the solid laser.

Risk analysis Power systems Laser elements Ionizing radiation Damage Global optimization Prediction Black-box modeling Dynamical-information approach 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FEMA: HAZUS-MH, Technical Manual, Federal Emergency Management Agency, Washington DC (2003) Google Scholar
  2. 2.
    Douglas, J.: Physical vulnerability modelling in natural hazard risk assessment. Nat. Hazards Earth Syst. Sci. 7, 283–288 (2007) CrossRefGoogle Scholar
  3. 3.
    Byrd, M., Cothern, R.: Introduction to Risk Analysis. Government Institutes, Rockville (2000) Google Scholar
  4. 4.
    Todinov, M.: Risk-Based Reliability Analysis and Generic Principles for Risk Reduction. Elsevier, Amsterdam (2006) Google Scholar
  5. 5.
    Grigsby, L.L.: Electric Power Generation, Transmission, and Distribution. CRC Press, Boca Raton (2007) Google Scholar
  6. 6.
    Biedilov, M., Bejsembaeva, H., Saidov, R.: Influence of ionizing radiation on performance of lasers. Ukr. Phys. J. 26, 1981–1986 (1981) Google Scholar
  7. 7.
    Rose, T., Hopkins, M., Fields, R.: Characterization and control of gamma and proton radiation effects on the performance of nd:yag and nd:ylf lasers. IEEE J. Quantum Electron. 31(9), 1593–1602 (1995) CrossRefGoogle Scholar
  8. 8.
    Knopov, P., Pardalos, P.: Simulation and Optimization Methods in Risk and Reliability Theory. Nova Science Publishers, New York (2009) MATHGoogle Scholar
  9. 9.
    Lee, C., Johnston, A., Tang, C., Lyke, J.: Total dose effects on microelectromechanical systems (mems): Accelerometers. Trans. Nucl. Sci. 43, 3127–3134 (1996) CrossRefGoogle Scholar
  10. 10.
    Sun, D., Zhang, Q., Xiao, J.-Z., et al.: Influence of gamma-ray irradiation on absorption and fluorescent spectra of nd:yag and yb:yag laser crystals. Chin. Phys. Lett. 25(6), 2081–2084 (1999) Google Scholar
  11. 11.
    Kaczmarek, S.: Influence of ionizing radiation on performance of nd: Yag lasers. Cryst. Res. Technol. 34(9), 1183–1190 (1999) CrossRefGoogle Scholar
  12. 12.
    Cheremnykh, O., Yatsenko, V., Semeniv, O., Shatokhina, I.: Nonlinear dynamical model for space weather prediction. Ukr. Phys. J. 53, 502–505 (2008) Google Scholar
  13. 13.
    Pardalos, P., Yatsenko, V.: Optimization approach to the estimation and control of Lyapunov exponents. Optim. Theory Its Appl. 128(1), 29–48 (2006) MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zverev, G., Golaev, Y., Shalaev, E., Shokin, A.: Lasers on yttrium aluminum garnet with neodymium. Radio Svyaz 144 (1985) Google Scholar
  15. 15.
    Brodin, M., Negriyko, A., Yatsenko, V.: Risk analysis of laser elements for complex characterization of damages by space radiation. In: SPIE Conference Optics and Optoelectronics, Prague Congress Centre, Prague, Czech Republic Damage to VUV, EUV, and X-ray Optics II (XDam2), vol. 7361 (1985) Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Vitaliy Yatsenko
    • 1
  • Nikita Boyko
    • 2
  • Steffen Rebennack
    • 2
  • Panos M. Pardalos
    • 2
  1. 1.Space Research Institute of NASU and NSAUKievUkraine
  2. 2.Center for Applied Optimization, Department of Industrial and Systems EngineeringUniversity of FloridaGainesvilleUSA

Personalised recommendations