Skip to main content
Log in

Low-Velocity Impact Characteristics of 3D-Printed Poly-Lactic Acid Thermoplastic Processed by Fused Deposition Modeling

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

The present research has focused on investigation into the low-velocity impact (LVI) behavior of 3D-printed poly-lactic acid thermoplastic material processed by fused deposition modeling. Four different infill density (ID) percentages, namely 40%, 60%, 80%, and 100%, were manufactured and subjected to the LVI test with 50 J energy input. The specimens were impacted using 12.7-mm hemispherical portion with conical head (ϕ 20 mm) striker which introduced two penetration stages. The impact characteristics in terms of velocity–time, force–time, and energy–time curves were investigated and reported. The penetration velocity limit, penetration energy, peak energy, and peak force were measured and discussed. The results revealed that the impact characteristics started to increase as the function of ID. The surface topography and fractured surfaces were examined using SEM. The fracture surfaces of 80% and 100% ID samples exhibited more viscous plastic deformation, indicating more energy absorption and load-carrying capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Domingo-Espin M, Puigoriol-Forcada J M, Garcia-Granada A-A, Llumà J, Borros S, and Reyes G, Mater Des83 (2015) 670.

    Article  CAS  Google Scholar 

  2. Wulle F, Coupek D, Schäffner F, Verl A, Oberhofer F, and Maier T, Proc CIRP60 (2017) 229.

    Article  Google Scholar 

  3. Galantucci L M, Lavecchia F, and Percoco G, CIRP Ann59 (2010) 247.

    Article  Google Scholar 

  4. Mueller B, Assem Autom32 (2012) 151.

    Article  Google Scholar 

  5. Kardel K, Ghaednia H, Carrano A L, and Marghitu D B, Addit Manuf14 (2017) 87.

    CAS  Google Scholar 

  6. Serra T, Planell J A, and Navarro M, Acta Biomater9 (2013) 5521.

    Article  CAS  Google Scholar 

  7. Tymrak B M, Kreiger M, and Pearce J M, Mater Des58 (2014) 242.

    Article  CAS  Google Scholar 

  8. Lederle F, Meyer F, Brunotte G-P, Kaldun C, and Hübner E G, Prog Addit Manuf1 (2016) 3.

    Article  Google Scholar 

  9. Aloyaydi B A, Sivasankaran S, and Ammar H R, AIMS Mater Sci6 (2019) 1033.

    Google Scholar 

  10. Lee B H, Abdullah J, and Khan Z A, J Mater Process Technol169 (2005) 54.

    Article  CAS  Google Scholar 

  11. Riddick J C, Haile M A, Von Wahlde R, Cole D P, Bamiduro O, and Johnson T E, Addit Manuf11 (2016) 49

    CAS  Google Scholar 

  12. Yao T, Deng Z, Zhang K, and Li S, Compos Part B Eng163 (2019) 393.

    Article  CAS  Google Scholar 

  13. Griffiths C A, Howarth J, Rowbotham G-A, and Rees A, Proc CIRP49 (2016) 28.

    Article  Google Scholar 

  14. Roberson D A, Perez A R T, Shemelya C M, Rivera A, MacDonald E, and Wicker R B, Addit Manuf7 (2015) 1.

    CAS  Google Scholar 

  15. Zou R, Xia Y, Liu S, Hu P, Hou W, Hu Q, and Shan C, Compos Part B Eng99 (2016) 506.

    Article  CAS  Google Scholar 

  16. Owolabi G, Peterson A, Habtour E, Riddick J, Coatney M, Olasumboye A, and Bolling D, Int J Mech Mater Eng11 (2016) 3.

    Article  Google Scholar 

  17. Huang B and Singamneni S, J Compos Mater49 (2015) 363.

    Article  CAS  Google Scholar 

  18. ASM International, Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event, ASTM International, West Conshohocken (2007).

    Google Scholar 

  19. Zhou F, Zhang M, Cao X, Zhang Z, Chen X, Xiao Y, Liang Y, Wong T-W, Li T, and Xu Z, Sens Actuators A Phys292 (2019) 112.

    Article  CAS  Google Scholar 

  20. Soliman E M, Sheyka M P, and Taha M R, Int J Impact Eng47 (2019) 39.

    Article  Google Scholar 

  21. Alaboodi A S and Sivasankaran S, J Manuf Process35 (2018) 479.

    Article  Google Scholar 

  22. Wu S, Liu X, Yeung K W K, Liu C, and Yang X, Mater Sci Eng R Rep80 (2014) 1.

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author wishes to thank the Qassim University at Saudi Arabia for all support required to carry out this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bandar Abdullah Aloyaydi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloyaydi, B.A., Sivasankaran, S. Low-Velocity Impact Characteristics of 3D-Printed Poly-Lactic Acid Thermoplastic Processed by Fused Deposition Modeling. Trans Indian Inst Met 73, 1669–1677 (2020). https://doi.org/10.1007/s12666-020-01952-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-01952-6

Keywords

Navigation