Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Multi-response Mathematical Modeling for Prediction of Weld Bead Geometry of AA6061-T6 Using Response Surface Methodology

  • 19 Accesses


In the present paper, multi-response mathematical model is established for prediction of weld bead geometry in cold metal transfer (CMT), MIG pulse synergic (MIG P), and MIG manual (MIG M) welding of AA6061-T6 using ER4043 (AlSi5%) as a filler material. Central composite face-centered design under response surface methodology is employed to develop the design matrix for conducting the experiments. The developed model is employed in finding the optimal process parameters for good weld bead aesthetics. Current (I) and welding speed (S) are opted as input process parameters for response output such as penetration, dilution, and heat input. This model is proficient to forecast the main effects and interactive effects of two factors of the opted welding process parameters. Results show that higher current values with low welding speeds result in deeper penetration, high amount of dilution with higher heat input, and vice versa. With lower heat input, CMT has high dilution and penetration with respect to MIG pulse synergic and standard MIG welding. Repeatability of CMT process is much higher as compared to the other two processes. The optimal process parameters are 92.518 A and 7.50 mm/s for CMT, 109.418 A and 10.873 mm/s for MIG P, and 110.847 A and 11.527 mm/s for MIG M with 61.11%, 68.80%, and 72.6% desirability, respectively. Predicted output values generated from regression model equation obtained from welding process parameters are very close and sometimes overlaid on actual output that obviously demonstrates the suitability of the second-order regression equations. A good amount of penetration and dilution with low heat input is required for better joint efficiency.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Yagati K P, Bathe R, Joardar J, Phaniprabhakar K V, and Padmanabham G, Trans Indian Inst Met72 (2019) 2763.

  2. 2.

    Kumar N P, Vendan S A, and Shanmugam N S, J Alloys Compd658 (2016) 255.

  3. 3.

    İrizalp A O, Durmuş H, Yüksel N, and Türkmen İ, Matéria (Rio de Janeiro)21 (2016) 615.

  4. 4.

    Adak, D K, Mukherjee M, and Pal T K, Trans Indian Inst Met68 (2015) 839.

  5. 5.

    Lee J I, and Rhee S, Proc Inst Mech Eng Part B J Eng Manuf214 (2000) 443.

  6. 6.

    Gunaraj V, and Murugan N, Weld J N Y81 (2002) 45-s.

  7. 7.

    Chandel R S, Seow H P, and Cheong F L, J Mater Process Technol72 (1997) 124.

  8. 8.

    Jou M, J Manuf Sci Eng125 (2003) 801.

  9. 9.

    Sivaraman A, and Paulraj S, Mater Today Proc4 (2017) 8892.

  10. 10.

    Sapakal S V, and Telsang M T, Int J Adv Eng Res Stud1 (2012) 28.

  11. 11.

    Patel C N, and Chaudhary S A N D I P, Int J Res Mod Eng Emerg Technol1 (2013) 48.

  12. 12.

    Balasubramanian M, Eng Sci Technol Int J19 (2016) 15.

  13. 13.

    Haragopal G, Reddy P V R, Reddy G, and Subrahmanyam J V, J Sci Ind Res70 (2011) 844.

  14. 14.

    Sankar B V, Lawrence I D, and Jayabal S, Mater Today Proc5 (2018) 14309.

  15. 15.

    Utkarsh S, Neel P, Mahajan M T, Jignesh P, and Prajapati R B, Int J Sci Res Publ4 (2014) 1.

  16. 16.

    Khanna P, and Maheshwari S, Mater Today Proc5 (2018) 4475.

  17. 17.

    Sharma S K, Maheshwari S, and Singh R K R, Mater Manuf Process34 (2019) 208.

  18. 18.

    Gunaraj V, and Murugan N, J Mater Process Technol95 (1999) 246.

  19. 19.

    Hunt A C, Kluken A O, and Edwards G R, Weld J N Y73 (1994) 9-s.

  20. 20.

    Sun Y L, Obasi G, Hamelin C J, Vasileiou A N, Flint T F, Balakrishnan J, Smith M C, and Francis J A, J Mater Process Technol265 (2019) 71.

  21. 21.

    Mendez P F, and Eagar T W, Adv Mater Process159 (2001) 39.

  22. 22.

    Elemary B R, Commun Stat Case Stud Data Anal Appl5 (2019) 168.

  23. 23.

    Goyal H, Mandal N, Roy H, Mitra S K, and Mondal B, Trans Indian Inst Met68 (2015) 453.

Download references

Author information

Correspondence to Yashwant Koli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koli, Y., Yuvaraj, N., Aravindan, S. et al. Multi-response Mathematical Modeling for Prediction of Weld Bead Geometry of AA6061-T6 Using Response Surface Methodology. Trans Indian Inst Met (2020).

Download citation


  • Weld bead geometry
  • Bead on plate
  • CMT
  • MIG pulse synergic
  • MIG manual and mathematical modeling