Advertisement

The Effect of Bath Parameters on the Electrocrystallisation of Cox–Cu100−x Alloys on Stainless Steel Cathode

  • Santosh Kumar Nathsharma
  • Sasmita Mishra
  • Krushna Gopal MishraEmail author
  • Raja Kishore Paramguru
Technical Paper
  • 7 Downloads

Abstract

The electrocrystallisation of the alloys of Cox–Cu100−x onto stainless steel cathode was investigated by performing cyclic voltammetry (CV) to understand the mechanism of deposition. The deposit morphology and crystal structure of deposit were analysed using scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The kinetic parameters were obtained from the cathodic polarisation of the CV to predict the electron transfer mechanism in the process. The transfer coefficient value (α) of the kinetic parameter revealed that both cathodic and anodic processes were unsymmetrical. It was demonstrated that the current efficiency of the deposit increased from 96.8% at pH 4.0 to 99.2% at pH 7, and then it dropped to 89.7% at pH 8. Before the deposition of the Co–Cu alloy, the initial copper deposition occurred at − 0.24 V and peaked at − 0.66 V. This was followed by the deposition of the Co–Cu alloy at − 1.04 V, which occurred after the deposition potential of Cu2+ (− 0.24 V) and Co2+ (− 0.89 V). The current then increasesd with a small increment in applied potential due to subsequent diffusion-controlled copper reduction along with the co-deposition of Co. The variation in the kinetic parameters was also reflected in the current efficiencies, the deposit morphologies, the crystallographic orientations and the nucleation overpotential values. The percentage of cobalt content in the alloy was observed to decrease in at.% from 54.35% at pH 4 to 49.86% at pH 6 and further to 20.62% at pH 8. The structure of the deposited alloy confirmed the formation of a single solid solution phase having different planes such as (222), (311), (220), (200) and a sharp peak due to face-centred cubic structure with (111) plane. This strong peak along with other similar peaks were observed in all the XRD of the deposit obtained at pH 4, 6 and 8. The morphology of the deposit characterised by the SEM showed that the deposit changed from a bitter gourd to a regular cauliflower-like structure as the pH value changed from 4 to 8.

Keywords

Electrocrystallisation Current efficiency Cathode potential CoxCu100−x alloys 

Notes

Acknowledgements

The authors are obliged to the SERB, DST, New Delhi, for the financial support, the Kalinga Institute of Industrial Technology, Deemed to be University, Bhubaneswar, and the IMMT, Bhubaneswar, for providing the necessary laboratory and characterisation facilities, respectively, for conducting this research work.

References

  1. 1.
    Y Nakamoto, M Yuasa, Y Chen, H Kusuda, and M Mabuchi, Scr Mater58 (2008) 731.CrossRefGoogle Scholar
  2. 2.
    T Cohen-Hyams, W D Kaplan, D Aurbach, Y S Cohen, and J Yahalom, J Electrochem Soc150 (2003) C28.CrossRefGoogle Scholar
  3. 3.
    S Kashiwabara, and Y Jyoko, J Electrochem Soc144 (1997) L193.CrossRefGoogle Scholar
  4. 4.
    E Gomez, A Labarta, A Llorente, and E Valles, J Electroanal Chem517 (2001) 63.CrossRefGoogle Scholar
  5. 5.
    Y Z Fang, Y Liu, and L H Zhang, Appl Catal A Gen397 (2011) 183.CrossRefGoogle Scholar
  6. 6.
    A Cao, G Liu, Y Yue, L Zhang, Y Liu, RSC Adv5 (2015) 58804.CrossRefGoogle Scholar
  7. 7.
    S S Abd El-Rehim, S M Abd El-Wahab, S M Rashwan, and Z M Anwar, J Chem Technol Biotechnol75 (2000) 237.CrossRefGoogle Scholar
  8. 8.
    T Nishizawa, and K Ishida, Bull Alloy Phase Diagr5 (1984) 161.CrossRefGoogle Scholar
  9. 9.
    S Gu, P Atanasova, M J Hampden-smith, T T Kodas, Thin Solid Films340 (1999) 45.CrossRefGoogle Scholar
  10. 10.
    Y Huai, M Chaker, H Pépin, S Boily, X Bian, and R W Cochrane, J Magn Magn Mater136 (1994) 204.CrossRefGoogle Scholar
  11. 11.
    C Gente, M Oehring, and R Bormann, Phys Rev B48 (1993) 13244.CrossRefGoogle Scholar
  12. 12.
    D L Khalyapin, P D Kim, J Kim, I A Turpanov, G V Bondarenko, and T N Isaeva, I Kim, Phys Solid State52 (2010) 1787.CrossRefGoogle Scholar
  13. 13.
    P E Bradley, and D Landolt, Electrochim Acta45 (1999) 1077.CrossRefGoogle Scholar
  14. 14.
    E Gomez, A Llorente, X Alcobe, and E Vallés, J Solid State Electrochem8 (2004) 82.CrossRefGoogle Scholar
  15. 15.
    Labarta A, A Llorente, and E Valles, Surf Coat Technol153 (2002) 261.CrossRefGoogle Scholar
  16. 16.
    R L Anton, M L Fdez-Gubieda, A Garcia-Arribas, J Herreros, and M Insausti, Mater Sci Eng A335 (2002) 94.CrossRefGoogle Scholar
  17. 17.
    L T De Farias, A S Luna, R De Janeiro, R São, and F Xavier, Mater Res11(2008) 1.CrossRefGoogle Scholar
  18. 18.
    S K Ghosh, T Bera, C Saxena, S Bhattacharya, and G K Dey, J Alloys Compd475 (2009) 676.CrossRefGoogle Scholar
  19. 19.
    Y Liu, and W Wang, Electrochem Soc159 (2012) D375.CrossRefGoogle Scholar
  20. 20.
    C D Grill, J P Kollender, and A W Hassel, J Electrochem Soc163 (2016) D3069.CrossRefGoogle Scholar
  21. 21.
    Y Ueda, and M Ito, Jpn J Appl Phys33 (1994) L1403.CrossRefGoogle Scholar
  22. 22.
    Y Jyoko, S Kashiwabara, and Y Hayashi, J Electrochem Soc144 (1997) L5.CrossRefGoogle Scholar
  23. 23.
    H Zaman, A Yamada, H Fukuda, and Y Ueda, J Electrochem Soc145(1998) 565.CrossRefGoogle Scholar
  24. 24.
    Y Ueda, T Houga, H Zaman, and A Yamada, J Solid State Chem147 (1999) 274.CrossRefGoogle Scholar
  25. 25.
    L Péter, A Cziráki, L Pogány, Z Kupay, I Bakonyi, M Uhlemann, M Herrich, B Arnold, and T W K Bauer, J Electrochem Soc148 (2001) C168.CrossRefGoogle Scholar
  26. 26.
    T Ohgai, X Hoffer, L Gravier, and J P Ansermet, J Appl Electrochem34 (2004) 1007.CrossRefGoogle Scholar
  27. 27.
    Q-X Liu, L Péter, J Pádár, and I Bakonyi, J Electrochem Soc152 (2005) C316.CrossRefGoogle Scholar
  28. 28.
    Y Lia, R Fan, M Moldovan, D P Young, W Wang, and E J Podlaha, ECS Trans2 (2007) 379.CrossRefGoogle Scholar
  29. 29.
    S Zsurzsa, L Peter, L F Kiss, and I Bakonyi, J Magn Magn Mater421 (2017) 194.CrossRefGoogle Scholar
  30. 30.
    T Wang, F Li, Y Wang, and L Song, Phys Stat Sol(a)203 (2006) 2426.CrossRefGoogle Scholar
  31. 31.
    J H Min, J H Wu, J U Cho, Q X Liu, J H Lee, Y D Ko, J S Chung, J H Lee, K Y Kim. J Magn Magn Mater304 (2006) e100.CrossRefGoogle Scholar
  32. 32.
    A Hannour, R Lardé, M Jean, J Bran, P Pareige, and J M Le Breton, J Appl Phys110 (2011) 63921.CrossRefGoogle Scholar
  33. 33.
    A Franczak, A Levesque, P Zabinski, D Li, M Czapkiewicz, R Kowalik, F Bohr, Q Wang, and J-P Chopart, Mater Chem Phys162 (2015) 222.CrossRefGoogle Scholar
  34. 34.
    A Tekgul, H Kockar, H Kuru, and M Alper, Z. Naturforsch73 (2018) 127.CrossRefGoogle Scholar
  35. 35.
    T M de Souza, D C B do Lago, and L F de Senna, Mater Res22 (2019) 1.Google Scholar
  36. 36.
    J J Kelly, M Cantoni, and D Landolt, J Electrochem Soc148 (2001) C620.CrossRefGoogle Scholar
  37. 37.
    J J Kelly, P E Bradley, and D Landolt, J Electrochem Soc147 (2000) 2975.CrossRefGoogle Scholar
  38. 38.
    A E Mohamed, S M Rashwan, S M Abdel-Wahaab, and M M Kamel, J Appl Electrochem33 (2003) 1085.CrossRefGoogle Scholar
  39. 39.
    M Gu, Electrochim Acta52 (2007) 4443.CrossRefGoogle Scholar
  40. 40.
    K Ignatova, and L Petkov, J Univ Chem Technol Metall44 (2009) 133.Google Scholar
  41. 41.
    K Ignatova, and D Lilova, J Chem Technol Metall51 (2016) 173.Google Scholar
  42. 42.
    L Mentar, M R Khelladi, A Azizi, G Schmerber, and A Dinia, Trans Inst Met Finish89 (2011) 143.CrossRefGoogle Scholar
  43. 43.
    L Mentar, M R Khelladi, A Azizi, and A Kahoul, Trans IMF90 (2012) 98.CrossRefGoogle Scholar
  44. 44.
    M R Khelladi, L Mentar, A Azizi, L Makhloufi, G Schmerber, and A Dinia, J Mater Sci Mater Electron23 (2012) 2245.CrossRefGoogle Scholar
  45. 45.
    G Senthilkumar, and S Ramachandran , in IEEE Proc Frontiers in Automobile and Mechanical Engineering, 25–27 Nov (2010) 257.  https://doi.org/10.1109/fame.2010.5714837.
  46. 46.
    K G Mishra, and R K Paramguru, J Electrochem Soc143 (1996) 510.CrossRefGoogle Scholar
  47. 47.
    K G Mishra, and R K Paramguru, Metall Mater Trans B 30 (1999) 223.CrossRefGoogle Scholar
  48. 48.
    M Ved, N Sakhnenko, M Glushkova, and T Bairachna, Chem Chem Technol8 (2014) 275.CrossRefGoogle Scholar
  49. 49.
    K G Mishra, and R K Paramguru, Afr J Pure Appl Chem4 (2010) 87.Google Scholar
  50. 50.
    S Mishra, S K Nathsharma, K G Mishra, and R K Paramguru, J Electrochem Soc165 (2018) D206.CrossRefGoogle Scholar
  51. 51.
    R K Paramguru, and S B Kanungo, Can Metall Quart37 (1998) 389.Google Scholar
  52. 52.
    R K Paramguru, K G Mishra, and S B Kanungo, Can Metall Quart37 (1998) 395.Google Scholar
  53. 53.
    R K Paramguru, and S B Kanungo, Can Metall Quart37 (1998) 405.Google Scholar
  54. 54.
    K G Mishra, and R K Paramguru, J Electrochem Soc147 (2000) 3302.CrossRefGoogle Scholar
  55. 55.
    M Kanungo, V Chakravarty, K G Mishra, and S C Das, Hydrometallurgy61 (2001) 1.CrossRefGoogle Scholar
  56. 56.
    K G Mishra, P Singh, and D M Muir, Hydrometallurgy65 (2002) 97.CrossRefGoogle Scholar
  57. 57.
    Mishra KG, Singh P, Hefter G and Muir D, Metall Mater Trans B33B (2002) 137.CrossRefGoogle Scholar
  58. 58.
    R Y Ying, J Electrochem Soc135(1988) 2964.CrossRefGoogle Scholar
  59. 59.
    E Gómez, A Llorente, and E Vallés, J Electroanal Chem495 (2000) 19.CrossRefGoogle Scholar
  60. 60.
    G R Pattanaik, D K Pandya, and S C Kashyap, J Electrochem Soc149 (2002) C363.CrossRefGoogle Scholar
  61. 61.
    P Jiao, N Duan, C Zhang, F Xu, G Chen, J Li, and L Jiang, Int J Hydrog Energy41 (2016) 17793.CrossRefGoogle Scholar
  62. 62.
    T G de Lima, B C C A Rocha, A V C Braga, D C B do Lago, A S Luna, and L F Senna, Surf Coat Technol276 (2015) 606.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Applied SciencesKalinga Institute of Industrial Technology Deemed to be UniversityBhubaneswarIndia
  2. 2.School of Mechanical EngineeringKalinga Institute of Industrial Technology Deemed to be UniversityBhubaneswarIndia

Personalised recommendations