Advertisement

Crack Propagation Behaviour in Thin Aluminium Alloy Sheet Repaired with Adhesively Bonded CFRP Patch

  • A. K. BakareEmail author
  • A. A. Shaikh
  • S. S. Kale
Technical Paper
  • 11 Downloads

Abstract

For reducing the crack tip stress intensity factor, adhesively bonded composite patches are employed for crack repair in thin structure. Experimental work was carried out to study environmental assisted cracking behaviour of crack repaired with single-sided bonded patch in aluminium alloy of 7xxx series in peak-aged condition. The observations were also made on crack in this alloy without any patch repair. The specimen developed for conducting the experiments simulated plane stress condition of thin structure. The patched and un-patched tensile test specimens were loaded simultaneously at constant load in the presence of 3.5% weight NaCl solution. The experimental set-up simulated the saline or corrosive environment. Aggressive effect of corrosion attack on crack due to anodic dissolution along with hydrogen embrittlement leading to faster crack growth in patched specimen was revealed compared to un-patched specimen. The present study is the improvement over similar researches carried out earlier in terms of design of test specimen under plane stress condition so as to obtain all the three regions of crack growth.

Keywords

Stress intensity factor Environmental assisted cracking Composite patch Aluminium alloy 7xxx series Hydrogen embrittlement 

Notes

References

  1. 1.
    Houston G, Quinn D, and Murphy A, J Aircraft, 53 (2016) 416.CrossRefGoogle Scholar
  2. 2.
    Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, and Miller W S, Mat Sci Eng A280 (2000) 102.CrossRefGoogle Scholar
  3. 3.
    Clark G, Eur Struct Integr Soc26 (2000) 97.CrossRefGoogle Scholar
  4. 4.
    Baker A A, Composites18 (1987) 293.CrossRefGoogle Scholar
  5. 5.
    Baker A A, Compos Struct47 (1999) 431.CrossRefGoogle Scholar
  6. 6.
    Hosseini-Toudeshky H, Compos Struct76 (2006) 243.CrossRefGoogle Scholar
  7. 7.
    Sabelkin V, Mall S, Hansen M A, Vandawaker R, and Derriso M, Compos Struct79 (2007) 55.CrossRefGoogle Scholar
  8. 8.
    Khan S M A, and Es-Saheb M, Int J Mech Prod Eng3 (2015) 5.Google Scholar
  9. 9.
    Katnam K B, Da Silva L F M, and Young T M, Prog Aerosp Sci61 (2013) 26.CrossRefGoogle Scholar
  10. 10.
    Kale S S, Raja V S, and Bakare A K, Corros Sci75 (2013) 318.CrossRefGoogle Scholar
  11. 11.
    Vogt H, and Spiedel M O, Corros Sci40 (1998), 251.CrossRefGoogle Scholar
  12. 12.
    Scheider I, Pfuff M, and Dietzel W, Eng Fract Mech75 (2008) 4283.CrossRefGoogle Scholar
  13. 13.
    Olden V, Thaulow C, Johnsen R, Ostby E, and Berstad T, Eng Fract Mech76 (2009) 827.CrossRefGoogle Scholar
  14. 14.
    Raykar N R, Maiti S K, and Singh Raman R K, Eng Fract Mech78 (2011) 3153.CrossRefGoogle Scholar
  15. 15.
    Dietzel W, Aanles Demechanica De La Fractura18 (2001) 1.Google Scholar
  16. 16.
    Duong C N, and Wang C H, Composite Repair, Theory and Design, Elsevier publications, London (2007), p 12.Google Scholar
  17. 17.
    David B, Elementary Engineering Fracture Mechanics, Martinus Nijhoff Publications, Dordrecht (1986), p 188.CrossRefGoogle Scholar
  18. 18.
    Zhu X K, and Jyoce J A, Eng Fract Mech85 (2012) 1.CrossRefGoogle Scholar
  19. 19.
    Newman J C, James M A, and Zerbst U, Eng Fract Mech70 (2003), 371.CrossRefGoogle Scholar
  20. 20.
    Zerbst U, Heinimann M, Donne C D, and Steglich D, Eng Fract Mech 76 (2009) 5.CrossRefGoogle Scholar
  21. 21.
    Heerens J, and Schodel M, Eng Fract Mech76 (2009) 101.CrossRefGoogle Scholar
  22. 22.
    Swenson D, and James M, FRANC2D and FRANC2D/L, A Crack Propagation Simulator for Plane Layered Structures, Cornell University, Ithaca (1998).Google Scholar
  23. 23.
    Allen F C, Damage Tolerance in Aircraft Structures, ASTM STP 486 (1971) 16.Google Scholar
  24. 24.
    Niu M H, Military HandbookMetallic Materials and Elements for Aerospace Vehicle Structures, MIL-HDBK-5G (1999).Google Scholar
  25. 25.
    Madani K, Touzain S, Feaugas X, Benguediab M, and Ratwani M, Int J Adhes Adhes29(2009) 225.CrossRefGoogle Scholar
  26. 26.
    Dirikolu M H, and Aktas A, Compos Struct50 (2000) 99.CrossRefGoogle Scholar
  27. 27.
    Farley G L, Newman J A, and James M A, in 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference (2004), AIAA 2004-1924.Google Scholar
  28. 28.
    Quinas D, Hebbar A, and Olay J V, J Appl Sci6 (2006) 2088.CrossRefGoogle Scholar
  29. 29.
    Raja V S, and Shoji T, Stress Corrosion Cracking: Theory and Practice, Woodhead Publishing Limited, Sawston (2011), p 307.CrossRefGoogle Scholar
  30. 30.
    Holroyd N J H, and Scamans G M, Metall Mater Trans A 44 (2012) 1.Google Scholar
  31. 31.
    Cooper K R, and Kelly R G, Corros Sci49 (2007) 2636.CrossRefGoogle Scholar
  32. 32.
    Nguyen T H, Brown B F, and Foley R T, Corrosion38 (1982) 319.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Regional Centre for Military Airworthiness, CEMILACNasikIndia
  2. 2.Department of Mechanical EngineeringSVNITSuratIndia
  3. 3.Regional Centre for Military Airworthiness (Forge&Foundary), CEMILACBengaluruIndia

Personalised recommendations