Effect of MnS and Its Size on the Heterogeneous Nucleation and Precipitation of Bismuth in Steel

  • Hongbing PengEmail author
  • Yao Tang
  • Yamei Zhang
  • Xiaoyong Wang
  • Chaoyang Zhou
Technical Paper


The effect of MnS and its size on the heterogeneous nucleation and precipitation of Bismuth was investigated. The results show that bismuth segregates at grain boundaries and suppresses the growth of grains in steel without MnS inclusion. While in steel containing MnS inclusion, bismuth segregates at the MnS/substrate interfaces and MnS can act as an effective nucleus for the heterogeneous nucleation of bismuth. The segregation degree of bismuth is reduced in steel with MnS inclusion, which may be because of the fact that MnS particles provide more interfaces for bismuth to distribute. Moreover, according to the experimental results, the optimum size of MnS for the heterogeneous nucleation of bismuth is 1–2.72 μm in diameter.


MnS Bismuth Heterogeneous nucleation Precipitation 



The authors acknowledge the financial support of Project No. 51704127 supported by National Natural Science Foundation of China.


  1. 1.
    Sander K, Lohse J, and Pirntke U, Hamburg: Institut für Ökologie und Politik GmbH 2000.Google Scholar
  2. 2.
    Lohse J, Sander K, and Wirts M, Hamburg: Institut für Ökologie und Politik GmbH 2001.Google Scholar
  3. 3.
    Reynolds P, Block V, and Essel I, et al. Steel Res Int78 (2007) 908CrossRefGoogle Scholar
  4. 4.
    Somekawa M, Kaiso M, and Matsushima Y, Kobelco Technol Rev24 (2001) 9.Google Scholar
  5. 5.
    Vea L. SAE Technical Paper on ‘New Steel Bar Products and Processing for Automotive Applications’[R]. Detroit: Society of Automotive Engineers (1997).Google Scholar
  6. 6.
    Liu H, and Chen W, Steel Res Int83 (2012) 1172.CrossRefGoogle Scholar
  7. 7.
    Kim Y, Kim H, and Shin S Y, et al. Metall Mater Trans A42 (2011) 3095.CrossRefGoogle Scholar
  8. 8.
    Kim Y, Kim H, and Shin S, et al. Metall Mater Trans A43 (2012) 882.CrossRefGoogle Scholar
  9. 9.
    Liu H T, and Chen W Q. Ironmak Steelmak41 ( 2013) 19.CrossRefGoogle Scholar
  10. 10.
    Kim H, Kang M, and Shin S Y, et al. Mater Sci Eng A568 (2013) 8.CrossRefGoogle Scholar
  11. 11.
    Kiviö M, and Holappa L, Metall Mater Transa B43 (2012) 233.CrossRefGoogle Scholar
  12. 12.
    Liang Y, Shi Z Y, and Liang Y L, Adv Mater Res734–737 (2013) 1531.CrossRefGoogle Scholar
  13. 13.
    Yang W, Duan H, and Zhang L, et al. Jom65 (2013) 1173.CrossRefGoogle Scholar
  14. 14.
    Yan L, Bo S, and Jinghong M, et al. J Univ Sci Technol Beijing31 (2009) 579.Google Scholar
  15. 15.
    Yamamoto K, Shibata H, and Mizoguchi S, ISIJ Int46 (2006) 82.CrossRefGoogle Scholar
  16. 16.
    Jing Z, Bo S, and Jinghong M, et al. J Chin Rare Earth Soc31 (2009) 579.Google Scholar
  17. 17.
    Sun G L, Song B, and Yang L Z, et al. Int J Mineral Metall Mater21 (2014) 654.CrossRefGoogle Scholar
  18. 18.
    Hondros E D, Proc R Soc A Math Phys Eng Sci286 (1965) 479.CrossRefGoogle Scholar
  19. 19.
    Zhangxue-Wei, and Zhangli-Feng, Yangwen, et al. J Iron Steel Res29 (2017) 724.Google Scholar
  20. 20.
    Massalski T B, Murray J L, Bennett L H, and Baker H, eds. ASM International, Ohio, ed. 2, 1990.Google Scholar
  21. 21.
    Boa D, Hassam S, and Kra G, et al. Calphad-Comput Coupling Phase Diagr Thermochem32 (2008) 227.CrossRefGoogle Scholar
  22. 22.
    Bramfitt B L, Metall Trans1 (1970) 1987.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Materials EngineeringJiangsu University of Science and TechnologyZhangjiagangChina
  2. 2.School of ScienceJiangsu University of Science and TechnologyZhenjiangChina

Personalised recommendations