Commencement of Ordering in Al–0.69Mg–0.31Si Alloy

  • J. MittraEmail author
  • S. Hata
  • K. Ikeda
  • A. Arya
Technical Paper


Early stages of ordering in dilute Al–0.69(at.%)Mg–0.31(at.%)Si alloy, aged at 373 K for 120 h and 7200 h and at 453 K for 20 h, have been studied using scanning transmission electron microscopy techniques. Starting from the solute enrichment in (110)-type parallel planes, merely after 120 h of aging, isothermal growth at 373 K has been observed to lead to the formation of the small-ordered region after 7200 h of aging. Scanning transmission electron microscopy images from the aforesaid three varieties of samples and the corresponding Fourier-transformed images have been the basis to suggest the possible path of evolution of β″ ordering in this dilute alloy. Based on this, the present study reveals the mechanism of formation of silicon pillar, which is the early stage of β″ that transforms to a fully developed β″. This corroborates with the concept of getting the final β″-strengthened product from an under-aged alloy by a suitable heat treatment.


GP zone Ordering STEM 



The authors thank Dr. Eiji Okunishi (JEOL, Japan) and Prof. Hideharu Nakashima and Prof. Kenji Kaneko (Kyushu University, Japan) for their cooperative support and Dr. R. Akiyoshi for STEM micrography. Special thanks to Dr. G. K. Dey for many helpful discussions and critical reading of the manuscript. This work was carried out under the Joint Research Project of Japan-India Science Cooperative Program of the Department of Science and Technology (DST) (DST/INT/JSPS/P-154/2013), India, and the Japan Society for the Promotion of Science (JSPS) and the Light Metal Educational Foundation, Inc. This work was also partly supported by the Grants in Aid for Scientific Research from the JSPS JP25286027 and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) JP22102002, Japan.


  1. 1.
    Murayama M, and Hono K, Acta Mater47 (1999) 1537.CrossRefGoogle Scholar
  2. 2.
    Van Huis M A, Chen J H, Sluiter M H F, and Zandbergen H W, Acta Mater55 (2007) 2183.CrossRefGoogle Scholar
  3. 3.
    Murayama M, Hono K, Saga M, and Kikuchi M, Mater Sci Eng A250 (1998) 127.CrossRefGoogle Scholar
  4. 4.
    Edwards GA, Stiller K, Dunlop GL, Couper MJ, Acta Mater46 (1998) 3893.CrossRefGoogle Scholar
  5. 5.
    Serizawa A, Hirosawa S, and Sato T, Metall Mater Trans A39 (2008) 243.CrossRefGoogle Scholar
  6. 6.
    Marioara CD, Andersen SJ, Jansen J, and Zandbergen H W, Acta Mater51 (2003) 789.CrossRefGoogle Scholar
  7. 7.
    Miao WF, and Laughlin D E, Scr Mater 40 (1999) 873.CrossRefGoogle Scholar
  8. 8.
    Gaber A, Gaffar M A, Mostafa M S, and Abo-Zeid E F, J Alloys Compd429 (2007) 167.CrossRefGoogle Scholar
  9. 9.
    Gupta A K, Lloyd D J, and Court S A, Mater Sci Eng A316 (2001) 11.CrossRefGoogle Scholar
  10. 10.
    Yang W, Huang L, Zhang R, Wang M, Li Z, and Jia Y, J Alloys Compd514 (2012) 220.CrossRefGoogle Scholar
  11. 11.
    Hasting H S, Frøseth A G, Andersen S J, Vissers R, Walmsley J C, Marioara C D, Danoix F, Lefebvre W, and Holmestad R, J Appl Phys106 (2009) 123527-1.CrossRefGoogle Scholar
  12. 12.
    Marioara C D, Andersen S J, and Zandbergen H W, Acta Mater49 (2001) 321.CrossRefGoogle Scholar
  13. 13.
    Dutta I, Allen S M, J Mater Sci Lett10 (1991) 323.CrossRefGoogle Scholar
  14. 14.
    Marioara C D, Andersen S J, Zandbergen H W, and Holmestad R, Metall Mater Trans A36 (2005) 691.Google Scholar
  15. 15.
    Matsuda K, Gamada H, Fujii K, Uetani Y, Sato T, and Ikeno S, Metall Mater Trans A29 (1998) 1161.CrossRefGoogle Scholar
  16. 16.
    Chang C S T, Wieler I, Wanderka N, Banhart J, Ultramicroscopy109 (2009) 585.CrossRefGoogle Scholar
  17. 17.
    Thomas G, J Inst Met90 (1961–1962) 57.Google Scholar
  18. 18.
    Chen J H, Costan E, van Huis M A, Xu Q, and Zandbergen H W, Science312 (2006) 416.CrossRefGoogle Scholar
  19. 19.
    Ninive P H, Strandlie A, Gulbrandsen-Dahl S, Lefebvre W, Marioara C D, Andersen S J, Friis J, Holmestad R, and Løvvik O M, Acta Mater69 (2014) 126.CrossRefGoogle Scholar
  20. 20.
    Ehlers F J H, Dumoulin S, and Holmestad R, Comput Mater Sci91 (2014) 200.CrossRefGoogle Scholar
  21. 21.
    Maruyama N, Uemori R, Hashimoto N, Saga M, and Kikuchi M, Scr Mater36 (1997) 89.CrossRefGoogle Scholar
  22. 22.
    Andersen S J, Zandbergen H W, Jansen J, Træholt C, Tundal U, and Reiso O, Acta Mater46 (1998) 3283.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Materials Science DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Homi Bhabha National InstituteTrombay, MumbaiIndia
  3. 3.Department of Advanced Materials Science and Engineering, Faculty of Engineering SciencesKyushu UniversityKasugaJapan
  4. 4.Division of Materials Science and Engineering, Faculty of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations