Advertisement

Effect of Oxide Bifilms on the Fracture Behavior of AM60B Mg Alloy

  • R. TaghiabadiEmail author
  • A. H. Shevidi
  • A. Razaghian
  • P. Abedinzadeh
Technical Paper
  • 26 Downloads

Abstract

The effect of entrained Mg oxide bifilms on the tensile properties and fracture behavior of AM60B Mg alloy was studied. For this purpose, tensile specimens were prepared at different melt temperatures (670, 685, and 700 °C) and holding times (5, 10, and 15 min). According to the results, preparing the samples under non-optimal melting conditions increased the volume fraction of oxide bifilms and bifilm-related defects in the microstructure which reduced the tensile properties. The best tensile properties were obtained in the sample poured at 685 °C after holding for 10 min in the furnace in which the lowest amount of inclusions/bifilms was observed. The microstructural evaluations and fractography analyses showed that the most relevant bifilm-related mechanisms deteriorating the tensile properties were the reduction in the effective load-bearing cross section, facilitated formation of gas/shrinkage porosities, and increased nucleation of microcracks.

Keywords

Mg AM60B Bifilm Tensile properties Fracture behavior 

Notes

Acknowledgements

The authors would like to thank Magnesium-Gostar Arish Company, Qazvin, Iran.

References

  1. 1.
    Tong X, You G, Liu Y, Long S, and Liu Q, J Mater Proc Tech271 (2019) 271.CrossRefGoogle Scholar
  2. 2.
    Emadi P, Vandersluis E, and Ravindran C, Trans Indian Inst Metals71 (2018) 2771.CrossRefGoogle Scholar
  3. 3.
    Tan Q, Atrens A, Mo N, and Zhang M X, Corr Sci112 (2016) 734.CrossRefGoogle Scholar
  4. 4.
    Űnal O, and Tiryakioğlu M, Mater Sci Eng A643 (2015) 51.CrossRefGoogle Scholar
  5. 5.
    Sin S L, Elsayed A, and Ravindran C, Int Mater Rev58 (2013) 419.CrossRefGoogle Scholar
  6. 6.
    Kitahara Y, Shimazaki H, Yabu T, Noguchi H, Sakamoto M, and Ueno H, Mater Sci Forum482 (2005) 359.CrossRefGoogle Scholar
  7. 7.
    Czerwinski F, Int Mater Rev60 (2015) 264.CrossRefGoogle Scholar
  8. 8.
    Balar M J, Patel J B, and Fan Z, Metals131 (2016) 1.Google Scholar
  9. 9.
    Shevidi A H, Taghiabadi R, and Razaghian A, Trans Nonferrous Met Soc China28 (2018) 20.CrossRefGoogle Scholar
  10. 10.
    Francis L F, Materials Processing: A Unified Approach to Processing of Metals, Ceramics, and Polymers, Academic Press, Elsevier, Amsterdam (2016), p 105.CrossRefGoogle Scholar
  11. 11.
    Li X, Xiong S M, and Guo Z, Mater Sci Eng A647 (2016) 497.Google Scholar
  12. 12.
    Gopalan R, and Prabhu N K, Mater Sci Tech27 (2011) 1757.CrossRefGoogle Scholar
  13. 13.
    El-Sayed M A, Hassanin H, and Essa K, Int J Adv Manuf Tech86 (2016) 1173.CrossRefGoogle Scholar
  14. 14.
    Griffiths W D, and Lai N W, Metall Mater Trans A38 (2007) 190.CrossRefGoogle Scholar
  15. 15.
    Wang L, Rhee H, Felicelli S D, Sabau A S, and Berry J T, in Proceedings 3rd International Symposium on Shape Casting, (eds) Campbell J, Crepeau P N, and Tiryakioǧlu M (2009), p 123.Google Scholar
  16. 16.
    Campbell J, AIMS Mater Sci3 (2016) 1436.CrossRefGoogle Scholar
  17. 17.
    Peng L, Zeng G, Su T C, Yasuda H, Nogita K, and Gourlay C M, JOM71 (2019) 2235.CrossRefGoogle Scholar
  18. 18.
    Mackie D, Robson J D, Withers P J, and Turski M, Mater Charact104 (2015) 116.CrossRefGoogle Scholar
  19. 19.
    Standard Methods of Tension Testing Wrought and Cast Aluminum and Mg Alloy Products, ASTM B557M-10, Annual Book of ASTM Standards, American Society for Testing and Materials (2010).Google Scholar
  20. 20.
    Kiełbus A, and Rzychoń T, Mater Sci Forum690 (2011) 214.CrossRefGoogle Scholar
  21. 21.
    Chelliah N M, Kumar R, Singh H, and Surappa M K, J Magnes Alloy5 (2017) 35.CrossRefGoogle Scholar
  22. 22.
    Habashi F, Alloys: Preparation, Properties, Applications, Wiley, Weinheim (1998).CrossRefGoogle Scholar
  23. 23.
    Hua Q, Gao D, Zhang Y, and Zhang Q, Mater Sci Eng A444 (2007) 69.CrossRefGoogle Scholar
  24. 24.
    Yim C D, You B, Jang R S, and Lim S G, J Mater Sci41 (2006) 2347.CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Sun D, Pan S, and Zhu M, Int J Heat Mass Transf146 (2020) 118838.CrossRefGoogle Scholar
  26. 26.
    El-Sayed M A, and Griffiths W D, Int J Cast Met Res27 (2014) 282.CrossRefGoogle Scholar
  27. 27.
    Campbell J, Complete Casting Handbook: Metal Casting Processes, Metallurgy, Techniques, and Design, Butterworth-Heinemann, Oxford (2011).Google Scholar
  28. 28.
    Peters A T, US Patent 3123467 (1964).Google Scholar
  29. 29.
    Gyarmati G, Fegyverneky G, Mende T, and Tokar M, Mater Charact157 (2019) 109925.CrossRefGoogle Scholar
  30. 30.
    Dispinar D, and Campbell J, Mater Sci Eng A528 (2014) 3860.CrossRefGoogle Scholar
  31. 31.
    Gerrard A J, and Griffiths W D, in Proceedings 5th International Symposium on Shape Casting (2004), p 269.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • R. Taghiabadi
    • 1
    Email author
  • A. H. Shevidi
    • 1
  • A. Razaghian
    • 1
  • P. Abedinzadeh
    • 1
  1. 1.Department of Materials Science and MetallurgyImam Khomeini International University (IKIU)QazvinIran

Personalised recommendations