Advertisement

Application of Desirability-Based Multiobjective Optimization Techniques to Study the Wear of Al Self-Lubricating Hybrid Nanocomposites

  • I. ManivannanEmail author
  • S. Ranganathan
  • S. Gopalakannan
Technical Paper
  • 15 Downloads

Abstract

In this study, novel Al6061–SiC nanocomposites and Al6061–SiC–Gr hybrid nanocomposites were fabricated by ultrasonic cavitation method by adding silicon carbide (SiC) of 0.8 and 1.6% and graphite (Gr) of 0.5 and 1.0% by weight basis for each casting. A Three-level Box–Behnken design of experiment was developed using response surface methodology. Dry sliding wear tests were performed as per the experimental design using a pin-on disc set-up at room temperature. Analysis of variance (ANOVA) was applied to investigate the influence of process parameters viz., load, sliding distance, wt% reinforcement and their interactions on specific wear rate and coefficient of friction. Further, a mathematical model was formulated by applying response surface method in order to estimate the tribology characteristics such as wear and COF of the hybrid nanocomposites. The specific wear rate and coefficient of friction were significantly influenced by % of SiC followed by % of Gr, load and sliding distance. The wear test parameters were optimized for minimizing specific wear rate and COF using desirability function approach. A set of optimum parameter of combination for AMMNC was identified as: SiC 1.36wt%; Gr 0.63 wt%; load 35.65 N and sliding distance 2848 m with specific wear rate of 0.517 g/N-m; coefficient of friction 0.181. The AFM image of Al6061–1.36SiC–0.63Gr hybrid nanocomposite at optimized condition confirmed the improvement in the wear surface smoothness of the hybrid nanocomposite compared to Al6061–SiC nanocomposites.

Keywords

Hybrid nanocomposite Wear AFM Modelling Desirability Lubricating 

Notes

References

  1. 1.
    Rohatgi P K, Schultz B F, Daoud A, and Zhang W W, Tribol Int43 (2010) 455.CrossRefGoogle Scholar
  2. 2.
    Vencl A, Bobic I, Arostegui S, Bobic B, Marinkovic A, and Babic M, J Alloys Compd506 (2010) 631.CrossRefGoogle Scholar
  3. 3.
    Mahdavi S, and Akhlaghi F, J Mater Sci464 (2011) 7883.CrossRefGoogle Scholar
  4. 4.
    Ravindran K, Manisekar P, Narayanasamy N, Selvakumar R, and Narayanasamy R, Mater Des 39 (2012) 42.CrossRefGoogle Scholar
  5. 5.
    Sajjadi S A, Ezatpour H R, and Beygi H, Mater Sci Eng A528 (2011) 8765.CrossRefGoogle Scholar
  6. 6.
    Manivannan I, Ranganathan S, Gopalakannan S, Suresh S, Nagakarthigan K, and Jubendradass R, Surface Interfaces8 (2017) 127.CrossRefGoogle Scholar
  7. 7.
    Li J, Lu S, Wu S, Guo W, and Li F, J Alloys Compd769 (2018) 848.CrossRefGoogle Scholar
  8. 8.
    Yang Y, Lan J, and Li X, Mater Sci Eng A380 (2004) 378.CrossRefGoogle Scholar
  9. 9.
    Eskin G I, and Eskin D G, Ultrason Sonochem10 (2003) 297.CrossRefGoogle Scholar
  10. 10.
    Manivannan I, Ranganathan S, Gopalakannan S, and Suresh S, Trans Indian Inst Met71 (2018) 1897.CrossRefGoogle Scholar
  11. 11.
    Sameezadeh M, Emamy M, and Farhangi H, Mater Design32 (2011) 2157.CrossRefGoogle Scholar
  12. 12.
    Mosleh-shirazi S, and Akhlaghi F, Tribol Int102 (2016) 28.CrossRefGoogle Scholar
  13. 13.
    Mosleh-Shirazi S, Akhlaghi F, and Li D Y, Tribol Int103 (2016) 620.CrossRefGoogle Scholar
  14. 14.
    Mohammad Sharif E, Karimzadeh F, and Enayati M H, Mater Des32 (2011) 3263.CrossRefGoogle Scholar
  15. 15.
    Wang X J, Wang N Z, and Wang L Y, Mater Des57 (2014) 638.CrossRefGoogle Scholar
  16. 16.
    Ezatpour H R, Torabiparizi M, and Sajjadi S A, Mater Chem Phys178 (2016) 119.CrossRefGoogle Scholar
  17. 17.
    Suresha S, and Sridhara B K, Compos Sci Technol70 (2010) 1652.CrossRefGoogle Scholar
  18. 18.
    Mahdavi S, and Akhlaghi F, J Compos Mater47 (4) (2012) 437.CrossRefGoogle Scholar
  19. 19.
    Hassan A M, Mayyas A T, Alrashdan A, and Hayajneh M T, J Mater Sci43 (2008) 5368.CrossRefGoogle Scholar
  20. 20.
    Kumar S, and Balasubramanian V, Tribol Int43 (2010) 414.CrossRefGoogle Scholar
  21. 21.
    Basavarajappa S, Chandramohan G, and Mahadevan A, Wear262 (2007) 1007.CrossRefGoogle Scholar
  22. 22.
    Sahin Y, Tribol Int43 (2010) 939.CrossRefGoogle Scholar
  23. 23.
    Ravindran P, Manisekar K, Narayanasamy P, Selvakumar N, and Narayanasamy R, Mater Des39 (2012) 42.CrossRefGoogle Scholar
  24. 24.
    Radhika N, and Raghu R, Tribol Lett59 (2015) 2.CrossRefGoogle Scholar
  25. 25.
    Kok M, J Adv Manuf Technol52 (2010) 207.CrossRefGoogle Scholar
  26. 26.
    Chiang K T, Int J Adv Manuf Technol37 (2008) 523.CrossRefGoogle Scholar
  27. 27.
    Ranganathan S, and Senthilvelan T, J Adv Manuf Technol56 (2011) 455.CrossRefGoogle Scholar
  28. 28.
    Ravi Kumar K, and Sreebalaji V S, Tribol Mater Surfaces Interfaces9 (2015) 128.Google Scholar
  29. 29.
    Gopalakannan S, and Senthilvelan T, Measurement46 (2013) 2705.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • I. Manivannan
    • 1
    Email author
  • S. Ranganathan
    • 2
  • S. Gopalakannan
    • 3
  1. 1.Department of Mechanical EngineeringMotilal Nehru Government Polytechnic CollegePuducherryIndia
  2. 2.Department of Mechanical EngineeringGMR Institute of Technology (An Autonomous Institution, Affiliated to JNTU, Kakinada)RajamIndia
  3. 3.Department of Mechanical EngineeringAdhiparasakthi Engineering CollegeMelmaruvathurIndia

Personalised recommendations