Transactions of the Indian Institute of Metals

, Volume 72, Issue 12, pp 3233–3239 | Cite as

Influence of High-Frequency Mechanical Peening on the Fatigue Life of Stainless Steel Joints in Corrosive Environment

  • R. GovindarajEmail author
  • R. Sudhakaran
  • K. M. Eazhil
  • S. Mahendran
  • L. Senthilkumar
Technical Paper


In the recent times, several post-processing techniques are proposed to improve the fatigue strength of the welded joints. Methods like high-frequency mechanical peening (HFMP) effectively enhances the fatigue corrosion characteristics of the welded metals and alloys in the corrosive environments also. The improvement of fatigue strength by HFMP is based on the relieving residual stresses and severe plastic deformation. This paper investigates the corrosion damage life of the AISI 316 welded stainless steel joints operated in the sea climate. The HFMP strengthened and unstrengthened samples are placed in the salt spray chamber for 1400 h. From the metallographic studies, it is observed that the HFMP strengthening has a significant effect on the fatigue strength at 2 × 106 cycles and increases fatigue strength by 45% before treating with salt spray solution. After soaking in salt spray chamber, HFMP does not exhibit a significant improvement in fatigue cyclic life and corrosion resistance.


AISI 316 MIG welded joints High-frequency mechanical peening Ultrasonic impact treatment Salt spray environment Residual stresses Corrosion fatigue resistance 



  1. 1.
    Davis J R, Corrosion of Weldments, ASM International, Russell Township (2006).Google Scholar
  2. 2.
    Syrett B, and Acharya A, Corrosion and Degradation of Implant Materials, ASTM International, West Conshohocken (1979).CrossRefGoogle Scholar
  3. 3.
    Yan F, Liu G, Tao N, and Lu K, Acta Materialia60 (2012) 1059.CrossRefGoogle Scholar
  4. 4.
    Fredriksson W, Depth profiling of the passive layer on stainless steel using photoelectron spectroscopy. Dissertations from the Faculty of Science and Technology, Acta Universitatis Upsaliensis (2012) p 1651.Google Scholar
  5. 5.
    Martins C, Moreira J, and Martins J, Eng Fail Anal39 (2014) 65.CrossRefGoogle Scholar
  6. 6.
    Ha H-Y, Jang M-H, Lee T-H, and Moon J, Mater Charact106 (2015) 338.CrossRefGoogle Scholar
  7. 7.
    Naghizadeh M, Nakhaie D, Zakeri M, and Moayed M H, Corros Sci94 (2015) 420.CrossRefGoogle Scholar
  8. 8.
    Ahmed A A, Mhaede M, Basta M, Wollmann M, and Wagner L, Surf Coat Technol280 (2015) 347.CrossRefGoogle Scholar
  9. 9.
    Zhiming L, Laimin S, Shenjin Z, Zhidong T, and Yazhou J, Mater Sci Eng A637 (2015) 170.CrossRefGoogle Scholar
  10. 10.
    Pacquentin W, Caron N, and Oltra R, Appl Surf Sci356 (2015) 561.CrossRefGoogle Scholar
  11. 11.
    Hao S, Zhao L, Zhang Y, and Wang H, Nucl Inst Methods Phys Res B Beam Interact Mater Atoms356–357 (2015) 12.CrossRefGoogle Scholar
  12. 12.
    Balusamy T, Sankara Narayanan T S N, Ravichandran K, Park I S, and Lee M H Corros Sci74 (2013) 332.CrossRefGoogle Scholar
  13. 13.
    Kumar P V, Reddy G M, and Rao K S, Def Technol11 (2015) 362.CrossRefGoogle Scholar
  14. 14.
    Malaki M, and Ding H, Mater Des87 (2015) 1072.CrossRefGoogle Scholar
  15. 15.
    Arifvianto B, and Widodo T D, Int J Miner Metall Mater19 (2015) 1093.Google Scholar
  16. 16.
    Ahmed A A, Mhaede M, Wollmann M, and Wagner L, Surf Coat Technol259 (2014) 448.CrossRefGoogle Scholar
  17. 17.
    Pokhmursky V I, and Khoma M S, Corrosion Fatigue of Metals and Alloys, Spolom, Lviv (2008).Google Scholar
  18. 18.
    Abdulah A, Malaki M, and Eskandari A Mater Des38 (2012) 7.CrossRefGoogle Scholar
  19. 19.
    Gao W, Wang D, Cheng F, Deng C, Liu Y, and Xu W, J Mater Proc Technol223 (2015) 305.CrossRefGoogle Scholar
  20. 20.
    Prokopenko G I, Mordyuk B N, and Knysh V V, Tekhn Diagnostika i Nerazrush Kontrol3 (2014) 34.Google Scholar
  21. 21.
    Daavary M, and Sadough Vanini S A, Mater Lett139 (2015) 462.CrossRefGoogle Scholar
  22. 22.
    Daavary M, and Sadough Vanini S A, J Mater Eng Perf24 (2015) 3658.CrossRefGoogle Scholar
  23. 23.
    Kumar D H, and Reddy A S, Int J Mech Eng Robot Res2 (2013) 37.Google Scholar
  24. 24.
    Kudryavtsev Y, and Kleiman J, in ASME 2013 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers (2013) p V06ATA060.Google Scholar
  25. 25.
    Wang H, Yu C, Wang S, and Gao J, Int J Electrochem Sci10 (2015) 1169.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringSNS College of EngineeringCoimbatoreIndia

Personalised recommendations