Advertisement

Processing of Mica for Extraction of Alumina and Potash Values

  • Ashwini Kumar
  • Himanshu Tanvar
  • Nikhil DhawanEmail author
Technical Paper
  • 26 Downloads

Abstract

Mica sample containing 34% alumina and 9% potash has been investigated as a potential dual source of alumina and potash. It was found that planetary milling had a strong effect on structure breakdown as well as on the release of alumina and potash values. Both alumina and potash were extracted from mica using mechanical milling followed by hydrochloric acid leaching and precipitation process. The optimal conditions derived from statistical design yielded 72% alumina and 75% potash values in the form of γ-alumina and sylvinite. The analysis of the final precipitate was carried out by different characterization techniques such as XRD, SEM–EDS, XRF, BET surface area analysis.

Keywords

Mica Alumina Potash Milling Leaching Precipitation 

Notes

Acknowledgements

The authors acknowledge the financial grant received from the Ministry of Mines and Science Engineering Research Board to carry out the research work.

References

  1. 1.
    IBM, Indian Minerals Yearbook 2017 (Part-III: Mineral Reviews), 56th edn, Potash.Google Scholar
  2. 2.
    Gibson B, Wonyen D G, Chelgani SC, Miner Eng 114 (2017) 64.CrossRefGoogle Scholar
  3. 3.
    Habashi F, Metall, 71 (2017) 338.Google Scholar
  4. 4.
    Ma S H, Wen Z G, Chen J N, Zheng S L, Miner Eng 22 (2009) 793.CrossRefGoogle Scholar
  5. 5.
    Agrawal S, Rayapudi V, Dhawan N, J Sustain Metall 4 (2018) 427.CrossRefGoogle Scholar
  6. 6.
    Hayrapetyan S S, Mangasaryan L G, Tovmasyan M R, Khachatryan H G, Acta Chromatographica 16 (2016) 192.Google Scholar
  7. 7.
    Habashi F, Handbook of Extractive Metallurgy Volume 2, WILEY-VCH (1997) ISBN. 3-527-287-92-2.Google Scholar
  8. 8.
    Chitan M, Ali Hosseini S, Salari D, Niaei, S, Mehrizadeh, J Chem Eng 34 (2017) 66.Google Scholar
  9. 9.
    Phillips C V, Wills K J, Hydrometallurgy 9 (1982) 15.CrossRefGoogle Scholar
  10. 10.
    Bazin C, El-Ouassiti K, Ouellet V, Hydrometallurgy 88 (2007) 196.CrossRefGoogle Scholar
  11. 11.
    Bhattacharyya, S, Behera P, App Clay Sci 146 (2017) 286.CrossRefGoogle Scholar
  12. 12.
    Da L, Jiang K, Jiang X, Wang S, Fan Y, Liu W, Hydrometallurgy 176 (2018) 1.Google Scholar
  13. 13.
    Jung M, Mishra B, Miner Eng 127 (2018) 122.CrossRefGoogle Scholar
  14. 14.
    Ford K J R, Hydrometallurgy, 29 (1992) 109.CrossRefGoogle Scholar
  15. 15.
    Tripathy A K, Sarangi C K, Tripathy B C, Sanjay K, Bhattacharya I N, Mahapatra B K, Behera P K, Satpathy B K, Int J Miner Process 138 (2015) 44.CrossRefGoogle Scholar
  16. 16.
    Tripathy A K, Behera B, Aishvarya V, Sheik A R, Dash B, Sarangi C K, Tripathy B C, Sanjay K, Bhattacharya I N, Miner Eng 131 (2019) 140.CrossRefGoogle Scholar
  17. 17.
    Matjie R H, Bunt J R, Heerden J H P, Miner Eng 18 (2005) 299.CrossRefGoogle Scholar
  18. 18.
    Kumar G, Tanvar H, Pratap Y, Dhawan N, Trans Indian Inst Met (2018)  https://doi.org/10.1007/s12666-018-1452-3.
  19. 19.
    Jena S K, Dhawan N, Rao D S, Mishra B K, and Das B, Int J Miner Process 133 (2014) 13.CrossRefGoogle Scholar
  20. 20.
    Shekhar S, Mishra D, Agarwal A, and Sahu K K, J Clean Prod 147 (2017) 681.CrossRefGoogle Scholar
  21. 21.
    Tanvar H, Dhawan N, Sep Sci Technol (2019)  https://doi.org/10.1080/01496395.2019.1588317.
  22. 22.
    Kumar A, Tanvar H, Pratap Y, Dhawan N, Mining Metallurgy & Explor 36 (2018) 547.Google Scholar
  23. 23.
    Samantray J, Anand A, Dash B, Ghosh M K, Behera A K, Trans Indian Inst Met (2019).  https://doi.org/10.1007/s12666-019-01730-z.
  24. 24.
    Jena S K, Misra P K, Das B, Miner Process Extr Met Rev 37 (2016) 323.CrossRefGoogle Scholar
  25. 25.
    Jena S K, Dash N, Rath S S, J Clean Prod 231 (2019) 64.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Metallurgical and Materials EngineeringIndian Institute of Technology, RoorkeeRoorkeeIndia

Personalised recommendations