Advertisement

Optimization of Machining and Geometrical Parameters to Reduce Vibration While Milling Metal Matrix Composite

  • Rajeswari SridharEmail author
  • Sivasakthivel Perumal Subramaniyan
  • S. Ramesh
Technical Paper
  • 13 Downloads

Abstract

During end milling of metal matrix composite (MMC), it is subjected to varying impact load and cutting force. This action induces vibration during machining, which results in poor surface finish and increased tool wear. In this study, an attempt has been made to determine the optimum level of geometrical parameters such as helix angle, nose radius and rake angle and machining parameters such as cutting speed, feed rate and depth of cut to obtain minimum vibration amplitude during end milling operation using particle swarm optimization (PSO). Machining was carried out on aluminum (Al 356)/silicon carbide (SiC) particulate MMC using high-speed steel end mill cutter. The experimental design adapted for conducting the experiments was L27 orthogonal design array. The experiments were conducted using vertical machining, and the vibration amplitudes were measured at two positions (spindle and workpiece holder) using a twin-channel piezoelectric accelerometer. The empirical regression model was developed by relating the input parameters and the output vibration amplitudes, and optimization of process parameters to obtain minimum acceleration amplitude was done using PSO. Scanning electron microscopic images of the milled surfaces were examined, and it indicated the presence of cracks and holes due to pulling out of SiC particles.

Keywords

Optimization PSO End milling MMC Vibration SEM 

Notes

References

  1. 1.
    El-Gallab M, and Sklad M, J Mater Process Technol 83 (1998) 151.CrossRefGoogle Scholar
  2. 2.
    Jeyakumar S, Marimuthu K, and Ramachandran T, J Mech Sci Technol 27 (2013) 2813.CrossRefGoogle Scholar
  3. 3.
    Ozben T, Kilickap E, and Cakır O, J Mater Process Technol 198 (2008) 220.CrossRefGoogle Scholar
  4. 4.
    Seeman M, Ganesan G, Karthikeyan R, and Velayudham A, Int J Adv Manuf Technol 48 (2010) (2010) 613.CrossRefGoogle Scholar
  5. 5.
    Premnath A A, Alwarsamy T, and Rajmohan T, Mater Manuf Processes 27 (2012) 1035.CrossRefGoogle Scholar
  6. 6.
    Sornakumar T, and Kathiresan M, Int J Min Metall Mater 17 (2010) 648.CrossRefGoogle Scholar
  7. 7.
    Ozben T, Kilickap E, and Cakır O, J Mater Process Technol 198 (2008) 220.CrossRefGoogle Scholar
  8. 8.
    Bhushan R K, Kumar S, and Das S, Int J Adv Manuf Technol 50 (2010) 459.CrossRefGoogle Scholar
  9. 9.
    Dabade U A, Joshi S S, Balasubramaniam R, and Bhanuprasad V V, J Mater Process Technol 192 (2007) 66.Google Scholar
  10. 10.
    Kannan S, and Kishawy H A, J Mater Process Technol 198 (2008) 399.CrossRefGoogle Scholar
  11. 11.
    Basheer A C, Dabade U A, Joshi S S, Bhanuprasad V V, and Gadre V M, J Mater Process Technol 197(1) (2008) 439.CrossRefGoogle Scholar
  12. 12.
    Subramanian M, Sakthivel M, Sooryaprakash K, and Sudhakaran R, Measurement 46 (2013) 4005.CrossRefGoogle Scholar
  13. 13.
    Karabulut Ş, Measurement 66 (2015) 139149.CrossRefGoogle Scholar
  14. 14.
    Weinert K, Kersting P, Surmann T, and Biermann D, Prod Eng 2 (2008) 255.CrossRefGoogle Scholar
  15. 15.
    Arokiadass R, Palaniradja K, and Alagumoorthi N, Trans Nonferrous Met Soc China 22 (2012) 1568.CrossRefGoogle Scholar
  16. 16.
    Zhang J Z, and Chen J C, Int J Adv Manuf Technol 39 (2008) 118.CrossRefGoogle Scholar
  17. 17.
    Sivasakthivel P S, Sudhakaran R, and Rajeswari S, Proc Inst Mech Eng Part B J Eng Manuf 227 (2013) 1788.CrossRefGoogle Scholar
  18. 18.
    Sivasakthivel P S, Velmurugan V, and Sudhakaran R, Int J Adv Manuf Technol 53 (2011) 453.CrossRefGoogle Scholar
  19. 19.
    Wang Z G, Rahman M, Wong Y S, and Sun J, Int J Mach Tools Manuf 45 (2005) 1726.CrossRefGoogle Scholar
  20. 20.
    Saravanan R S R S, Siva Sankar R, Asokan P, Vijayakumar K, and Prabhaharan G, Int J Adv Manuf Technol 26 (2005) 30.CrossRefGoogle Scholar
  21. 21.
    Palanisamy P, Rajendran I, and Shanmugasundaram S, Int J Mach Machinability Mater 1 (2006) 233.Google Scholar
  22. 22.
    Ozcelik B, Oktem H, and Kurtaran H, Int J Adv Manuf Technol 27 (2005) 234.CrossRefGoogle Scholar
  23. 23.
    Baskar N, Asokan P, Prabhaharan G, and Saravanan R, Int J Adv Manuf Technol 25 (2005) 1078.CrossRefGoogle Scholar
  24. 24.
    Yusup N, Zain A M, and Hashim S Z M, Procedia Eng 29 (2012) 914.CrossRefGoogle Scholar
  25. 25.
    Shirvanimoghaddam K, Khayyam H, Abdizadeh H, Karbalaei Akbari M, Pakseresh A H, Ghasali E, and Naebe M, Mater Sci Eng A 658 (2016) 135.CrossRefGoogle Scholar
  26. 26.
    Peace G S, Taguchi Methods, A Hands-on Approach. Addison-Wesley, Reading, MA (1992).Google Scholar
  27. 27.
    Modares H, Alfi A, and Sistani M B N, Eng Appl Artif Intell 23 (2010) 1105.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Rajeswari Sridhar
    • 1
    Email author
  • Sivasakthivel Perumal Subramaniyan
    • 1
  • S. Ramesh
    • 1
  1. 1.School of Mechanical EngineeringSASTRA UniversityThanjavurIndia

Personalised recommendations