Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 12, pp 3171–3178 | Cite as

Study on Interface Behavior of SiC/SiO2/Al and SiC/Ni/Al

  • Xiaohong WangEmail author
  • Li Wang
  • Xingyu Gao
  • Qiao-gang Hu
  • Mohd Talha
  • Hao Liu
  • Sensen Chai
Technical Paper
  • 51 Downloads

Abstract

High-temperature oxidation and electroless nickel plating are two common surface modification processes to improve the wettability of SiC/Al interface. The structure and properties of SiC/SiO2/Al and SiC/Ni/Al interface layers were studied for the preparation of aluminum alloy drill pipe. Two kinds of 6.5%SiC/Al–Cu–Mg–Zn composite ingot were prepared using vacuum melting/casting method, and the added SiC particles in the composites were modified by high-temperature oxidation and electroless nickel plating, respectively. Analysis of structure demonstrates that the interface structures of composites ingot are SiC/SiO2/Al structure and SiC/Ni/Al structure, respectively. For SiC/SiO2/Al interface structure, a smooth and dense SiO2 film is well bonded to SiC and Al by chemical bonding. For SiC/Ni/Al interface structure, there is a very thin Ni film between SiC and Al and the bonding strength between Ni and Al is not so strong. Results of the performance test of the composites indicate that the tensile strength and compressive strength of the composites with SiC/SiO2/Al interface structure, respectively, increase by 7.51% and 24.90%, compared with the composites ingot with SiC/Ni/Al interface structure.

Keywords

Surface modification Interface structure SiC/Al composite High-temperature oxidation Electroless nickel plating 

Notes

Acknowledgements

This work was financially supported by the Open Fund Key Laboratory of Oil & Gas Field Material (X151518KCL16) and Chongqing Science and Technology Bureau Fund (CSTC 2017JCYJA1012).

References

  1. 1.
    Wang X H, Peng Z W, Zhong S Y, Wang G R, Hu Q G, and Lin Y H, Int J Electrochem Sci13 (2018) 8970.CrossRefGoogle Scholar
  2. 2.
    Wang X H, Guo J, Lin Y H, Guo X H, Peng J, and Zhou X Y, Surf Interface Anal, 48 (2016) 860.Google Scholar
  3. 3.
    Wang X H, Peng Z W, Ma L, Lin Y H, Li G X, and Wang H L, Int J Electrochem Sci, 12 (2017) 11006.CrossRefGoogle Scholar
  4. 4.
    Liu Y, Hua X Z, Huang J H, Cui X, Zhou X L, and Yu Y W. Chin J Corros Prot36 (2016) 130.Google Scholar
  5. 5.
    Zhao W X, Effect of SiC Pretreatment on Microstructure and Tensile Properties of SiCp/2014Al Composites, Jilin University (2015).Google Scholar
  6. 6.
    Guo Y C, Cao C, Li J P, Xu T, and Dong S P, Therm Process45 (2016) 131.Google Scholar
  7. 7.
    Li L B, An M Z, and Wu G H, J Inorg Chem21 (2005) 982.Google Scholar
  8. 8.
    Marumo C, and Pask J A, J Mater Sci12 (1997) 223.CrossRefGoogle Scholar
  9. 9.
    Tekmen C, Saday F, and Cocen U, J Compos Mater42 (2008) 1671.CrossRefGoogle Scholar
  10. 10.
    Tong H, Hu Z F, Zhang Z, Cai Z W, Qi C Y, He D H, Mo F, and Jiang K Y, Met Funct Mater22 (2015) 53.Google Scholar
  11. 11.
    Liu J S, Wettability and Interfacial Structure of Al Alloys with SiC and SiO 2, Jilin University (2016).Google Scholar
  12. 12.
    Zhao D W, and Mi G F, Aerosp Manuf Technol (2008) 26.Google Scholar
  13. 13.
    Xia C R, Guo X X, and Li F Q, Colloids Surf A Physicochem Eng Asp179 (2001) 229.CrossRefGoogle Scholar
  14. 14.
    Tekmen C, Saday F, and Cocen U, J compos Mater42 (2008) 1671.CrossRefGoogle Scholar
  15. 15.
    Pázmán J, Mádai V, and Tóth J, Int J Microstruct Mater Prop7 (2012) 220.Google Scholar
  16. 16.
    Liu J A, and Shao L F, Typical Atlas of Aluminum Alloy Extrusion Die, Chemical Industry Press, Beijing (2007).Google Scholar
  17. 17.
    Wang C T, Ma L Q, Yin M Y, Liu Z Y, Ding Y, Zhang H, and Chen Y G, Spec Cast Nonferrous Alloys309 (2010).Google Scholar
  18. 18.
    Ye Y, Study on Enhanced Phase Dispersion and Interface Behavior of SiCp/AlCuMg Composites, Southwest Petroleum University (2017).Google Scholar
  19. 19.
    Wang W M, Pan F S, Sun X W, Zeng S M, and Lu Y, J Chongqing Univ (Nat Sci Ed) (2004) 108.Google Scholar
  20. 20.
    Liu J Y, Liu Y C, Liu G Q, Yin Y S, and Shi Z L, Chin J Nonferrous Met12 (2002).Google Scholar
  21. 21.
    Mitlin D, Morris J W, and Radmilovic V, Metall Mater Trans A31 (2000) 2697.CrossRefGoogle Scholar
  22. 22.
    Barlow I C, Rainforth W M, and Jones H, J Mater Sci35 (2000) 1413.CrossRefGoogle Scholar
  23. 23.
    Wei H, Guan H R, Sun X F, Zheng Q, Hou G C, and Hu Z Q, J Chin Soc Corros Prot24 (2004) 2.Google Scholar
  24. 24.
    Leon C A, and Drew R A L, Compos Part A Appl Sci Manuf33 (2002) 1429.CrossRefGoogle Scholar
  25. 25.
    Chen S G, Ding H F, and Zheng Z X, Surf Technol30 (2001) 3.Google Scholar
  26. 26.
    Liu Y C, ZhangY M, Rong D H, Zhao Y, Yin Y S, and Zuo T J, Ordnance Mater Sci Eng32 (2009) 24.CrossRefGoogle Scholar
  27. 27.
    van Otterloo J L D M, Bagnoli D, and De Hosson J T M, Acta Metall Mater43 (1995) 2649.CrossRefGoogle Scholar
  28. 28.
    Yan G, Zhou J E, and Wang Y F, Rare Metal Mater Eng35 (2006) 1621.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Xiaohong Wang
    • 1
    Email author
  • Li Wang
    • 1
  • Xingyu Gao
    • 1
  • Qiao-gang Hu
    • 1
  • Mohd Talha
    • 1
  • Hao Liu
    • 1
  • Sensen Chai
    • 2
  1. 1.Materials Science and EngineeringCollege Southwest Petroleum UniversityChengduPeople’s Republic of China
  2. 2.Metallurgy and Materials EngineeringChongqing University of Science and TechnologyChongqingPeople’s Republic of China

Personalised recommendations