Corrosion Resistance Behavior of GTAW Welded AISI type 304L Stainless Steel

  • Gopinath ShitEmail author
  • M. V. Kuppusamy
  • S. Ningshen
Review Paper


Stainless steel (SS) has broad application in nuclear and several industries as structural material attributed to the desirable mechanical and suitable corrosion resistance properties. Corrosion resistance behaviors and microstructural evolutions of type 304L SS gas tungsten arc welded (GTAW) joint of different thickness were investigated using optical microscopy, scanning electron microscopy, X-ray diffraction, micro-Vickers hardness test and electrochemical techniques. Microscopic analsis reveals the weld microstrcture, interdendritic δ-ferrite of lathy and skeletal features along with austenite structure. Hardness is more in 6-mm-thick welded sample attributed to δ-ferrite contents. The measured corrosion rate in boiling HNO3 increases with the increase in the thickness of the welded specimen, and base metal shows a marginally higher corrosion rate compared to weld metals. The corrosion rate of the base and weld metals of the AISI type 304L SS in 65% nitric acid is in the acceptable range. However, as the delta ferrite with a higher amount of chromium is present, the austenite matrix in the microstructure results in a lower corrosion rate of the weldment compared to its base material. The electrochemical corrosion behaviors of type 304L SS base metal and weldments in 6 M HNO3 solution at 25 ± 1 °C are evaluated using potentiodynamic polarization and electrochemical impedance spectroscopy methods. The corrosion resistance, hardness and microstructure behavior of GTAW welded AISI type 304L SS are elaborated and discussed.


Stainless steel GTAW Microstructure Corrosion resistance 



The authors sincerely thank Dr. A.K. Bhaduri, Director, IGCAR, Dr. G. Amarendra Director, Metallurgy and Materials Group, Dr. Shaju. K. Albert, Associate Director, MEG and Dr. John Philip, Head, CSTD, IGCAR, for their constant support and encouragement. Thanks are also given to Dr. S. Vijayalakshmi and Dr. Manish Chandra, MC&MFCG, IGCAR for chemical analysis of the 308L filler rod and recording EDS spectra, respectively.

Supplementary material

12666_2019_1779_MOESM1_ESM.docx (5.7 mb)
Supplementary material 1 (DOCX 5787 kb)


  1. 1.
    Karcı F, Kacar R, and Süleyman G, J Mater Process Technol 209 (2009) 4011.CrossRefGoogle Scholar
  2. 2.
    Sedriks A J, Corrosion of Stainless Steels, Wiley (1979)Google Scholar
  3. 3.
    Raj B, and Mudali U K, Prog Nucl Energy 48 (2006) 283.CrossRefGoogle Scholar
  4. 4.
    Mirshekari G R, Tavakoli E, Atapour M, and Sadeghian B, Mater Des 55 (2014) 905.CrossRefGoogle Scholar
  5. 5.
    Ningshen S, and Sakairi M, J Solid State Electrochem 19 (2015) 3533.CrossRefGoogle Scholar
  6. 6.
    Wang J, Xiong J, Peng Q, Fan H, Wang Y, Li G, and Shen B, Mater Charact 60 (2009) 197.CrossRefGoogle Scholar
  7. 7.
    Verma J, and Taiwade R V, J Manuf Process 25 (2017) 152.CrossRefGoogle Scholar
  8. 8.
    Dhas J E R, and Dhas J H, Procedia Eng 38 (2012) 544.CrossRefGoogle Scholar
  9. 9.
    Grimma A, Schulzeb S, Silvaa A, Göbela G, Standfussa J, Brennera B, Beyera E, and Füsselb U, Mater Today Proc 2S (2015) S169.CrossRefGoogle Scholar
  10. 10.
    Shukla A K, Sharma V M J, Murty S V S N, Narayanan P R, and Sharma S C, Procedia Eng 86 (2014) 8.CrossRefGoogle Scholar
  11. 11.
    Ibanez P, Chien S, Dinyavari M, Dobbs M, Gundy W, Howard G, Keowen R, Rentz P, Smith C, Stoessel J, Walton W, and Yifat C S, Nucl Eng Des 64 (1981) 1.CrossRefGoogle Scholar
  12. 12.
    Eyre B L, Prog Mater Sci 42 (1997) 23.CrossRefGoogle Scholar
  13. 13.
    Li H, Zou J, Yao J, and Peng H, J Alloys Compd 727 (2017) 531.CrossRefGoogle Scholar
  14. 14.
    Boumerzoug Z, Derfouf C, and Baudin T, Engineering 2 (2010) 502.CrossRefGoogle Scholar
  15. 15.
    Yeganeh V E, and Li P, Mater Des 124 (2017) 78.Google Scholar
  16. 16.
    Rao C V, Reddy G M, and Rao K S, Def Technol 11 (2015) 123.CrossRefGoogle Scholar
  17. 17.
    Mehrpouya M, Gisario A, and Elahinia M, J Manuf Process 31 (2018) 162.CrossRefGoogle Scholar
  18. 18.
    Wang G, Zhao Y, and Hao Y, J Mater Sci Technol 34 (2018) 73.CrossRefGoogle Scholar
  19. 19.
    Ragunathan S, Balasubramanian V, Malarvizhi S, and Rao A G, Def Technol 11 (2015) 308.CrossRefGoogle Scholar
  20. 20.
    Unnikrishnan R, Idury K S N S, Ismail T P, Bhadauria A, Shekhawat S K, Khatirkar R K, and Sapate S G, Mater Charact 93 (2014) 10.CrossRefGoogle Scholar
  21. 21.
    Lee D J, Jung K H, Sung J H, Kim Y H, Lee K H, Park J U, Shin Y T, and Lee H W, Mater Des 30 (2009) 3269.CrossRefGoogle Scholar
  22. 22.
    Yan J, Gao M, and Zeng X, Opt Lasers Eng 48 (2010) 512.CrossRefGoogle Scholar
  23. 23.
    Pinnow K E, and Moskowitz A, Weld J 49 (1970) 278.Google Scholar
  24. 24.
    Colombier L and Hochmann J, Stainless and Heat Resisting Steels New York, St. Martin’s Press (1968)Google Scholar
  25. 25.
    Nilsson J O, Karlsson L, and Andersson J O, J Mater Sci Technol 11 (1995) 276.CrossRefGoogle Scholar
  26. 26.
    Atamert S, and King J E, Acta Met Mater 39 (1991) 273.CrossRefGoogle Scholar
  27. 27.
    Sejč D I P, and Kubíček R, Sci Proc 19 (2011) 8.Google Scholar
  28. 28.
    Zumelzu E, Sepulveda J, and Barra M, J Mater Process Technol 94 (1999)36.CrossRefGoogle Scholar
  29. 29.
    Baek J H, Kim Y P, Kim W S, and Kho Y T, Int J Press Vessels Pip 78 (2001) 351.CrossRefGoogle Scholar
  30. 30.
    Messler R W Jr, Principles of Welding, John Wiley and Sons, USA (1999).CrossRefGoogle Scholar
  31. 31.
    Mohammed G R, Ishak M, Aqida S N, and Abdulhadi H A, IOP Conf Ser Mater Sci Eng 257 (2017) 012072.Google Scholar
  32. 32.
    Kou S, Welding Metallurgy (2nd Edition), John Wiley& Sons, Inc., Hoboken (2003), p 17.Google Scholar
  33. 33.
    Korinko P S, and Malene S H, Pract Fail Anal 4 (2001) 61.CrossRefGoogle Scholar
  34. 34.
    Raj B, Mudali U K, Jayakumar T, Kasiviswanathan K V, and Natarajan R, Sadhana 25 (2000) 519.CrossRefGoogle Scholar
  35. 35.
    Balbaud F, Gerard S, Fauvet P, Santarini G, and Picard G Corros Sci 42 (2000) 1685CrossRefGoogle Scholar
  36. 36.
    Ningshen S, Sakairi M, Suzuki K, and Ukai S, Corros Sci 78 (2014) 322.CrossRefGoogle Scholar
  37. 37.
    Ningshen S, Mudali U K, Mukherjee P, Sarkar A, Barat P, Padhy N, and Raj B, Corros Sci 50 (2008) 2124.CrossRefGoogle Scholar
  38. 38.
    Padhy N, Ningshen S, Panigrahi B K, and Mudali U K, Corros Sci 52 (2010) 104.CrossRefGoogle Scholar
  39. 39.
    Ningshen S, Mudali U K, Amarendra G, and Raj B, Corros Sci 51 (2009) 322.CrossRefGoogle Scholar
  40. 40.
    Drogowska M, Ménard H, Lasia A, and Brossard L, J Appl Electrochem 26 (1996) 1169.Google Scholar
  41. 41.
    Hsu C H, and Mansfeld F, Corrosion 57 (2001) 747.CrossRefGoogle Scholar
  42. 42.
    Ningshen S, Kamachi U M, Ramya S, and Raj B, Corros Sci 53 (2011) 64.CrossRefGoogle Scholar
  43. 43.
    Leone G L, and Kerr H W, Weld J 61 (1982) 13.Google Scholar
  44. 44.
    David S A, Weld J 59 (1980) 4.Google Scholar
  45. 45.
    Lippold J C, Welding Metallurgy and Weldibilty, John Wiley and Sons, Inc., Hoboken (2015)Google Scholar
  46. 46.
    Kou S, Welding Metallurgy (2nd edition) John Willey, USA (2003).Google Scholar
  47. 47.
    J F Lancaster, Metallurgy of Welding (6th edition), Abington Publishing, England (2009).Google Scholar
  48. 48.
    Little R, Welding and Welding Technology (1st edition), McGraw Hill (2001).Google Scholar
  49. 49.
    Welding Handbook (8th edition), volume 1 and 2, American Welding Society, USA (2007).Google Scholar
  50. 50.
    Gowrisankar I, Bhaduri A K, Seetharaman V, Verma D D N, and Achar D R G, Weld J 5 (1987) 147.Google Scholar
  51. 51.
    David S A, Weld J 4 (1981) 63.Google Scholar
  52. 52.
    Lippold J C, and Kotecki D J, Welding Metallurgy and Weldibilty of Stainless Steel, John Wiley and Sons, Inc., Canada (2005).Google Scholar
  53. 53.
    Das N M, Lotto A, Berretetta J R, and De R W, Weld Int 24 (2010) 739.CrossRefGoogle Scholar
  54. 54.
    Kumar S, and Shahi A S, Mater Des 32 (2011) 3617.CrossRefGoogle Scholar
  55. 55.
    Awang M, Raza S K, and Yahaya M S A, J Mater Sci Eng Technol 46 (2015) 492.Google Scholar
  56. 56.
    Musa M H A, Maleque M A, and Ali M Y, IOP Conf Ser Mater Sci Eng 290 (2018) 012041.CrossRefGoogle Scholar
  57. 57.
    Shome M, Mater Sci Eng A 445–446 (2007) 460.Google Scholar
  58. 58.
    Schino A D, and Kenny J M, J Mater Sci Lett 21 (2002) 1631.CrossRefGoogle Scholar
  59. 59.
    Dasgupta A, Karthikeyan T, Saroja S, Raju V R, Vijayalakshmi M, Dayal R K, and Raghunathan V S, J Mater Eng Perform 16 (2007) 800.Google Scholar
  60. 60.
    Fauvet P, Balbaud F, Robin R, Tran Q T, Mugnier A, and Espinoux D, J Nucl Mater 375 (2008) 52.CrossRefGoogle Scholar
  61. 61.
    Ningshen S, Sakairi M, Suzuki K, and Okuno T, Corros Sci 91 (2015) 120.CrossRefGoogle Scholar
  62. 62.
    Armstrong R D, and Cleland G E, J Appl Electrochem 28 (1998) 1205.CrossRefGoogle Scholar
  63. 63.
    Ningshen S, and Mudali U K, J Mater Eng Perform 19 (2010) 274.CrossRefGoogle Scholar
  64. 64.
    Olsson C O A, and Landolt D, Electrochem Acta 48 (2003) 1093.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Homi Bhaba National InstituteMumbaiIndia
  2. 2.Corrosion Science and Technology Division, Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  3. 3.Quality Assurance DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations