Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 12, pp 3089–3105 | Cite as

Pitting Corrosion Studies on Fusion Zone of Shielded Metal Arc Welded Type 316LN Stainless Steel Weldments

  • Srinivas Mannepalli
  • A. Ravi Shankar
  • R. P. GeorgeEmail author
  • S. Ningshen
  • John Philip
  • G. Amarendra
Technical Paper
  • 87 Downloads

Abstract

During welding of 316L stainless steel (SS), heat-affected zone (HAZ) is susceptible to sensitisation and fusion zone is susceptible to pitting corrosion in stainless steel welds. High-nitrogen electrodes with 0.045–0.055 wt% C and with different Cr contents were used for welding of prototype fast breeder reactor components. As-welded and thermally aged (823 K for 2 h) weldments of type 316LN SS with different N contents made by arc welding were studied for localised corrosion. ASTM A262 Practice A and E tests and double-loop electrochemical potentiokinetic reactivation studies on as-welded and thermally aged specimens revealed the absence of sensitisation in the HAZ and in fusion zone. However, pitting potential of the weldments was found to vary with the concentration of N + Cr + Mo in fusion zone and found to be lower in the thermally aged samples. The correlation between weld microstructure, alloying elements and pitting corrosion behaviour has been discussed.

Keywords

Welding Thermal ageing DLEPR Pitting corrosion Microstructures Linear polarisation resistance (LPR) 

Notes

Acknowledgement

The authors would like to thank Dr A.K. Bhaduri, Director, IGCAR, for his constant support and encouragement and Smt. P. Sundari, CSTD/MMG, IGCAR, for providing experimental support during the investigation.

References

  1. 1.
    Dayal R K, Parvathavarthini N, and Raj B, Int Mater Rev50 (2005) 129.CrossRefGoogle Scholar
  2. 2.
    Jayakumar T, Bhaduri A K, Mathew M D, Albert S K, and Kamachi Mudali U, Adv Mater Res794 (2013) 670.CrossRefGoogle Scholar
  3. 3.
    Mannan S L, Chetal S C, Raj B, and Bhoje S B, in Proceedings of Seminar on Materials R&D for PFBR (2013).Google Scholar
  4. 4.
    Silva C C, Farias J P, and de Santana HB, Mater Des30 (2009) 1581.CrossRefGoogle Scholar
  5. 5.
    Kumar S, and Sahi A S, Int J Comput Appl0975-8887 (2015) 1.Google Scholar
  6. 6.
    Garcia C, de Tiedra M P, Blanca Y, Martin O, and Martin F, Corros Sci50 (2008) 2390.CrossRefGoogle Scholar
  7. 7.
    Unnikrishnan R, Idury K S, Ismail T P, Bhandari A, Shekhawat S K, Khatirkar R K, and Sapate S G, Mater Charact93 (2014) 10.CrossRefGoogle Scholar
  8. 8.
    Pujar M G, Kamachi Mudali U, Dayal R K, and Gill T P S, Corrosion48 (1992) 579.CrossRefGoogle Scholar
  9. 9.
    Kamachi Mudali U, Hasan Shaikh A R, and Dayal R K, Intergranular Corrosion Behaviour of Type 316LN Weldments, NWS (1997) 1.Google Scholar
  10. 10.
    Kamachi Mudali U, and Dayal R K, Mater Sci Technol16 (2000) 1.CrossRefGoogle Scholar
  11. 11.
    Baeslack W A, Savage W F, and Duquette D J, Weld J Res Suppl (1979) 83.Google Scholar
  12. 12.
    Albert S K, and Bhaduri A K, Research and Development in Welding and Hard Facing Towards Construction of Prototype Fast Breeder Reactor, 38th MPA-Seminar, October 1–2, 2012, Stuttgart 195.Google Scholar
  13. 13.
    Li L, Chai M, Li Y, Bai W, and Duan Q, Appl Mech Mater331 (2013) 578.CrossRefGoogle Scholar
  14. 14.
    Vijayanand V D, Laha K, Parameswaran P, Ganesan V, and Mathews M D, Mater Sci Eng A 607 (2014) 138.CrossRefGoogle Scholar
  15. 15.
    Streitcher M A, Theory and Application of Evaluation Test for Detecting Susceptibility to Intergranular Attack in Stainless Steels and Related Alloys-Problems and Opportunities, ASTM STP 656, American Society for Testing and Material, Philadelphia (1975), p 70.Google Scholar
  16. 16.
    Marttivilpass, Prediction of Micro Segregation and Pitting Corrosion Resistance of Austenic Stainless Steel Welds by Modeling. Doctor of Science in Technology Thesis, Helsinki University (1999) p 1–166.Google Scholar
  17. 17.
    Kamachi Mudali U, Dayal R K, Gill T P S, and Gnanamoorthy J B, Werkstoffe Corros37 (1986) 637.CrossRefGoogle Scholar
  18. 18.
    Pujar M G, Parvathavarthini N, Dayal R K, Mater Chem Phys123 (2010) 407.CrossRefGoogle Scholar
  19. 19.
    Toppo A, Pujar M G, Sreevidya N, and Philip J, Def Technol14 (2018) 226.CrossRefGoogle Scholar
  20. 20.
    Poonguzhali A, Pujar M G, and Kamachi Mudali U, J Mater Eng Perform49 (1993) 977.Google Scholar
  21. 21.
    Ogawa T, Aoki S, Sakamoto T, and Zaizen T, The Weldability of Nitrogen Containing Austenitic Stainless Steel: Chloride Pitting Corrosion Resistance. Missouri (1982) p 139.Google Scholar
  22. 22.
    Ferrar R A, Hulen C, and Thomas R G, J Mater Sci20 (1985) 2828.CrossRefGoogle Scholar
  23. 23.
    Suuatala N, Metall Trans A144 (1983) 191.CrossRefGoogle Scholar
  24. 24.
    Delong W T, Weld J53 (1974) 2735.Google Scholar
  25. 25.
    Koteck D J, and Siewert T A, Weld J71 (1992) 1715.Google Scholar
  26. 26.
    Parvathavarthini N, Dayal R K, Kathak H S, Shankar V, and Shanmugan V, J Nucl Mater355 (2006) 68.CrossRefGoogle Scholar
  27. 27.
    Toppo A, Pujar M G, Arivazahagan B, Vasudevan M, Mallika C, and Kamachi Mudali U, Corrosion514 (2016) 295.Google Scholar
  28. 28.
    Basu K, Das M, Bhattacharjee D, and Chakraborti P C, Mater Sci Technol23 (2007) 1278.CrossRefGoogle Scholar
  29. 29.
    ASTM A262-14, Standard Practices for Detecting Susceptibility to Intergranular Attack in Austenitic Stainless Steels, ASTM International, USA (2014).Google Scholar
  30. 30.
    David S A, Ferrite Morphologhy and Variations in Ferrite Content in Austenitic Stainless Steel Welds, Cleveland, Ohio (1981) p 63.Google Scholar
  31. 31.
    Takalo T, Suutula N, and Moiso T, Metall Trans A10 (1979) 1173.CrossRefGoogle Scholar
  32. 32.
    Ghosh S K, Jha S, Mallick P, and Chattopadhyay P P, Mater Manuf Process28 (2013) 249.CrossRefGoogle Scholar
  33. 33.
    Aydogdu G H, Determination of Susceptibility to Intergranular Corrosion in 304L & 316L Type Stainless Steels by Electrochemical Reactivation Method, Degree of Master of Science Thesis, Middle East Technical University (2004) p 1.Google Scholar
  34. 34.
    Muraleedharan P, Gnanamoorthy J B, and Prasad Rao K, Corrosion45 (1989) 142.CrossRefGoogle Scholar
  35. 35.
    Parvathavarthini N, and Dayal R K, J Nucl Mater399 (2010) 62.CrossRefGoogle Scholar
  36. 36.
    Mozhi T A, Clark W A T, Nishimoto K, Jhonson W B, and Mac Donald D D, Corrosion41 (1985) 555.CrossRefGoogle Scholar
  37. 37.
    Frankel G S, J Electrochem Soc145 (1998) 2186.CrossRefGoogle Scholar
  38. 38.
    Szklarska-Smialowska Z, Corrosion27 (1971) 223.CrossRefGoogle Scholar
  39. 39.
    Raja V S, Corros Rev21 (2003) 1.CrossRefGoogle Scholar
  40. 40.
    ASTM G102-89, Standard Practice for Calculation of Corrosion Rates and Related Information from Electrochemical Measurements, ASTM International, USA, 2014.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Srinivas Mannepalli
    • 1
    • 2
  • A. Ravi Shankar
    • 1
    • 2
  • R. P. George
    • 1
    Email author
  • S. Ningshen
    • 1
    • 2
  • John Philip
    • 1
    • 2
  • G. Amarendra
    • 1
    • 2
  1. 1.Metallurgy and Materials GroupIndira Gandhi Centre for Atomic ResearchKalpakkamIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia

Personalised recommendations