Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 10, pp 2851–2860 | Cite as

Deformation Behavior, Microstructure and Microhardness of Mg–3Al–1Zn Microtubes Processed by Isothermal Micro-Backward Extrusion

  • S. T. Khandani
  • G. FarajiEmail author
Technical Paper
  • 43 Downloads

Abstract

In the present work, for the first time, the capability of isothermal micro-backward extrusion method for fabrication of microtubes of coarse-grained as-cast AZ31 magnesium alloy was confirmed. Macrographs of the fabricated microtubes showed no visible surface cracks and acceptable dimensional accuracy. Microstructural investigations of the microtube revealed inhomogeneous microstructure consisting of a non-uniform distribution of shear bands and dynamically recrystallized grains. Microhardness measurements showed considerable enhancement compared with the as-received material due to the formation of shear bands and grain refinement inside them. Moreover, microhardness measurements revealed inhomogeneous mechanical properties of the microtube. Deformation behavior was investigated by finite element simulation using conventional material model. True stress–strains data extracted from experimental micro-compression test were used as the material parameters for finite element simulation. As a result, the regions with the highest material flow were found to be in the vicinity of the radius of the punch. Comparing this result with microstructural investigations showed that these regions had the highest density of shear bands and dynamically recrystallized grains.

Keywords

Microforming Magnesium alloy Microtube Finite element simulation Deformation behavior Microstructural inhomogeneity 

Notes

Acknowledgements

This work was supported by Iran National Science Foundation (INSF).

References

  1. 1.
    Fu M W, and Chan W L, Micro-scaled Products Development via Microforming, Springer, London (2014).CrossRefGoogle Scholar
  2. 2.
    Amani S,  Faraji G, Met Mater Int (2019)  https://doi.org/10.1007/s12540-019-00285-4.
  3. 3.
    Hartl C, in: Y. Qin (Ed.) Micro-Manufacturing Engineering and Technology, William Andrew Publishing, Boston, (2010) p 146.CrossRefGoogle Scholar
  4. 4.
    Furushima T, and Manabe K, J Mater Process Technol 191 (2007) 59.CrossRefGoogle Scholar
  5. 5.
    Furushima T, Imagawa Y, Manabe K I, and Sakai T, J Mater Process Technol 223 (2015) 186.CrossRefGoogle Scholar
  6. 6.
    Furushima T, and Manabe K, J Mater Process Technol 187188 (2007) 236.CrossRefGoogle Scholar
  7. 7.
    Wang L, Fang G, Qian L, Leeflang S, Duszczyk J, and Zhou J, Prog Natl Sci Mater Int 24 (2014) 500.CrossRefGoogle Scholar
  8. 8.
    Ensafi M, Faraji G, and Abdolvand H, Mater Lett 197 (2017) 12.CrossRefGoogle Scholar
  9. 9.
    Abdolvand H, Sohrabi H, Faraji G, and Yusof F, Mater Lett 143 (2015) 167.CrossRefGoogle Scholar
  10. 10.
    Dieter G E, Kuhn H A, and Semiatin S L, Handbook of Workability and Process Design, ASM International (2003).Google Scholar
  11. 11.
    Faraji G, Mashhadi M M, Dizadji A F, and Hamdi M, J Mech Sci Technol 26 (2012) 3463.CrossRefGoogle Scholar
  12. 12.
    Skubisz P, Skowronek T, and Siñczak A J, Metall Foundry Eng 33 (2007) 113.Google Scholar
  13. 13.
    Vander Voort G F, A.S.M.I.H. Committee (2004).Google Scholar
  14. 14.
    Fu M W W, Wang J L L, and Korsunsky A M M, Int J Mach Tools Manuf 109 (2016) 94.CrossRefGoogle Scholar
  15. 15.
    Dieter G E, and Bacon D, Mechanical Metallurgy, McGraw‐Hill (1988).Google Scholar
  16. 16.
    Faraji G, Mashhadi M M, Kim H S, Mater Sci Eng A, 528 (2011) 4312.CrossRefGoogle Scholar
  17. 17.
    Kim H L, Lee J H, Lee C S, Bang W, Ahn S H, and Chang Y W, Mater Sci Eng A 558 (2012) 431.Google Scholar
  18. 18.
    Amani S, Faraji G, Abrinia K, J Manuf Process 28 (2017) 197.CrossRefGoogle Scholar
  19. 19.
    Chun Y B, and Davies C H J, Mater Sci Eng A 556 (2012) 253.Google Scholar
  20. 20.
    Zhang Z, Wang M P, Jiang N, and Zhu S, J Alloys Compd 512 (2012) 73.CrossRefGoogle Scholar
  21. 21.
    Amani S, Faraji G, Mehrabadi H K, Abrinia K, Ghanbari H, J Alloys Compd  723 (2017) 467.CrossRefGoogle Scholar
  22. 22.
    Zhang D, and Li S, Mater Sci Eng A 528 (2011) 4982.CrossRefGoogle Scholar
  23. 23.
    Chan W L, Fu M W, Lu J, and Liu J G, Mater Sci Eng A 527 (2010) 6638.Google Scholar
  24. 24.
    Vollertsen F, Prod Eng 2 (2008) 377.CrossRefGoogle Scholar
  25. 25.
    Wang C J, Shan D B, Zhou J, Guo B, and Sun L N, J Mater Process Technol 187188 (2007) 256.CrossRefGoogle Scholar
  26. 26.
    Wagner S W, in, Michigan Technological University (2013).Google Scholar
  27. 27.
    Kleiner S, Beffort O, and Uggowitzer P J, Scr Mater 51 (2004) 405.CrossRefGoogle Scholar
  28. 28.
    Kim W, and Sa Y, Scr Mater 54 (2006) 1391.CrossRefGoogle Scholar
  29. 29.
    Wu Y, Shen Y, Wu P, Chen K, Yu Y, and He G, Int J Solids Struct 0 (2016) 1.Google Scholar
  30. 30.
    Faraji G, Jafarzadeh H, Jeong H J, Mashhadi M M, and Kim H S, Mater Des 35 (2012) 251.CrossRefGoogle Scholar
  31. 31.
    Fatemi-Varzaneh S M, Zarei-Hanzaki A, and Beladi H, Mater Sci Eng A 456 (2007) 52.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations