Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 10, pp 2793–2802 | Cite as

Prediction of High-temperature Deformation Behavior of Low-carbon Bainitic Nb–Ti Micro-alloyed Steel Based on an Improved Strain–Stress Relation

  • Zhao-Hai GaoEmail author
  • Qing-Wu Cai
  • Bao-Sheng Xie
  • Xu Chen
  • Li-Xiong Xu
  • Yang Yun
Technical Paper
  • 63 Downloads

Abstract

Low-carbon bainitic Nb–Ti micro-alloyed steel was used in the present study to investigate the high-temperature deformation behavior. The high-temperature compression was carried out on a thermal simulation machine with a temperature range of 800 °C–1200 °C and a strain rate of 0.1–15 s−1. Using work-hardening and softening mechanisms (dynamic recovery, dynamic recrystallization), a constitutive model was built on the basis of a newly proposed strain–stress relation, and flow stress at a strain rate of 0.5 and 10 s−1 was employed to test the established model. By means of comparing predicted and calculated results, the reliability of the model was proved, and the predictability of the flow stress model was also quantified in terms of root mean square error and average absolute relative error, which were calculated to be less than 11 MPa and 7.00%, respectively. These error estimators confirm the constitutive models based on the improved strain–stress relation and indicate an effective method to predict the high-temperature flow stress with high precision.

Keywords

Low-carbon bainitic steel Flow stress Hot compression Constitutive model 

Notes

References

  1. 1.
    Fries T P, Zilian A, and Moës N, Int J Numer Methods Eng 86 2011 403.CrossRefGoogle Scholar
  2. 2.
    Yu H, Guo Y, and Lai X, Mater Des 30 2009 2501.CrossRefGoogle Scholar
  3. 3.
    Hua M, and Lu S Q, J Mater Process Technology 113 (2001) 52.Google Scholar
  4. 4.
    Yu W, Li G, and Cai Q, et al., J Mater Process Technol 217 (2015) 317.CrossRefGoogle Scholar
  5. 5.
    Xie B S, Cai Q W, and Yun Y, et al., Mater Sci Eng A (2016). http://dx.doi.org/10.1016/j.msea.2016.10.119.
  6. 6.
    Yu W, Xu S X, and Wang B, et al., Trans Mater Treatment 7 (2015) 48.Google Scholar
  7. 7.
    Yu W, Xie B S, and Wang B, et al., J Iron Steel Res Int 23 (2016) 910.CrossRefGoogle Scholar
  8. 8.
    Ji G, Li F, and Li Q, et al., Mater Sci Eng A 528 2011 4774.CrossRefGoogle Scholar
  9. 9.
    Li H Y, Wei D D, and Hu J D, et al., Compute Mater Sci 53 2012 425.CrossRefGoogle Scholar
  10. 10.
    Xiao X, Liu G Q, and Hu B F, et al., Compute Mater Sci 62 (2012) 227.CrossRefGoogle Scholar
  11. 11.
    Mandal S, Rakesh V, and Sivaprasad P V, et al., Mater Sci Eng: A 500 (2009) 114.CrossRefGoogle Scholar
  12. 12.
    Wang Y P, Han C, and Wang C, et al., J Mater Sci 46 (2011) 2922.CrossRefGoogle Scholar
  13. 13.
    Yu W, Xu L X, and Zhang Y, Trans Mater Heat Treat 10 (2016) 261.Google Scholar
  14. 14.
    Lin Y C, Chen M S, and Zhong J, Mech Res Commun 35 (2008) 142.CrossRefGoogle Scholar
  15. 15.
    Lin Y C, Wen D X, and Deng J, et al., Mater Des 59 (2014) 115.CrossRefGoogle Scholar
  16. 16.
    Xie B S, Cai Q W, and Yu W, et al., Acta Metallurgica Sinica (English Lett) (2016).  https://doi.org/10.1007/s40195-016-0498-7.
  17. 17.
    Sah J P, Richardson G J, and Sellars C M, J Aust Met 14 (1969) 292.Google Scholar
  18. 18.
    Wei H L, Liu G Q, Xiao X, Zhang M H, Acta Metall Sinica 6 (2013) 731.CrossRefGoogle Scholar
  19. 19.
    Puchi-Cabrera E S, Staia M H, and Guérin J D, et al., Int J Plast 51 (2013) 145.CrossRefGoogle Scholar
  20. 20.
    Xie, B S, Cai, Q W, and Wei, Y, et al., J Mater Eng Perform (2016).  https://doi.org/10.1007/s11665-016-2388-6.
  21. 21.
    Cheong K S, and Busso E P, Acta Materialia 52 (2004) 5665.CrossRefGoogle Scholar
  22. 22.
    Song, Y, Guan, Z, and Pinkui, et al., Acta Metallurgica Sinica -Chinese Edition 42 (2006) 673.Google Scholar
  23. 23.
    Liu J, Chang H, and Wu R, et al., Mater Charact 45 (2000) 175.CrossRefGoogle Scholar
  24. 24.
    Zhao H, Liu G, and Xu L, Mater Sci Eng: A. 559 (2013) 262.CrossRefGoogle Scholar
  25. 25.
    Xu Y, Tang D, and Song Y, et al., Mater Des 39 (2012)168.CrossRefGoogle Scholar
  26. 26.
    Hutchinson B, and Ridley N, Scripta Materialia 55 (2006) 299.CrossRefGoogle Scholar
  27. 27.
    Wang J, Wang X, and Yang H, et al., J Cent S Univ 22 (2015) 2052.CrossRefGoogle Scholar
  28. 28.
    Saadatkia S, Mirzadeh H, and Cabrera J M, Mater Sci Eng: A 636 (2015) 196.CrossRefGoogle Scholar
  29. 29.
    Wang J, Yang H T, Wang X G, and Yang, X G et al., Trans Mater Heat Treatment 36 (2015) 211.Google Scholar
  30. 30.
    Yang J, Xu G, and Han B, et al., J Wuhan Univ Sci Technol 35 (2012) 85.Google Scholar
  31. 31.
    Cai J, Li F, and Liu T, et al., Mater Des 32 (2011) 1144.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Steel Technology of USTBBeijingChina
  2. 2.National Engineering Research Center of Advanced RollingUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations