Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 11, pp 2923–2932 | Cite as

Numerical Modelling Methods for Ultrasonic Wave Propagation Through Polycrystalline Materials

  • S. ShivaprasadEmail author
  • C. V. Krishnamurthy
  • Abhishek Pandala
  • Anuraag Saini
  • Adithya Ramachandran
  • Krishnan Balasubramaniam
Technical Paper
  • 80 Downloads

Abstract

The present article addresses the development at Centre for Non-destructive Evaluation, Indian Institute of Technology Madras, of three different numerical methods, namely finite element, ray tracing and finite-difference time-domain methods for investigating the propagation of ultrasonic waves through polycrystalline media. These methods are believed to aid in better understanding of ultrasonic wave interaction in materials exhibiting both simple and complex grain morphologies. The understanding is expected to provide an improved non-destructive assessment of material and defect characterisation.

Keywords

Ultrasonic grain scattering Polycrystals FE method Ray tracing method FDTD 

Notes

Acknowledgements

This work has been partially supported by the Board of Research and Nuclear Science (BRNS) (Grant No. MEE/11-12/282/BRNS/KRIS), India.

References

  1. 1.
    Yalda I, Margetan F J, and Thompson R B, J Acoust Soc Am 99 (1996) 3445.  https://doi.org/10.1121/1.414991.CrossRefGoogle Scholar
  2. 2.
    Spies M, Rieder H, Dillhöfer A, Schmitz V, and Müller W, J Nondestruct Eval 31 (2012) 310.  https://doi.org/10.1007/s10921-012-0150-z.CrossRefGoogle Scholar
  3. 3.
    Mason W P, and McSkimin H J, J Acoust Soc Am 19 (1947) 464.  https://doi.org/10.1121/1.1916504.CrossRefGoogle Scholar
  4. 4.
    Papadakis E P, J Acoust Soc Am 37 (1965) 711.  https://doi.org/10.1121/1.1909401.CrossRefGoogle Scholar
  5. 5.
    Kumar A, Jayakumar T, Palanichamy P, and Raj B, Scr Mater 40 (1999) 333.  https://doi.org/10.1016/s1359-6462(98)00435-7.CrossRefGoogle Scholar
  6. 6.
    Kumar A, Jayakumar T, and Raj B, Philos Mag A 80 (2000) 2469.  https://doi.org/10.1080/01418610008216486.CrossRefGoogle Scholar
  7. 7.
    Stanke F E, and Kino G S, J Acoust Soc Am 75 (1984) 665.  https://doi.org/10.1121/1.390577.CrossRefGoogle Scholar
  8. 8.
    Weaver R L, J Mech Phys Solids 38 (1990) 55.  https://doi.org/10.1016/0022-5096(90)90021-u.CrossRefGoogle Scholar
  9. 9.
    Lobkis O I, and Rokhlin S I, Appl Phys Lett 96 (2010) 2008.  https://doi.org/10.1063/1.3416910.CrossRefGoogle Scholar
  10. 10.
    Papadakis E P, in Ultrasonics, vol. 19 (ed) Edmonds PDBT-M in EP, Academic Press (1981), pp 237–298.  https://doi.org/10.1016/S0076-695X(08)60336-1.Google Scholar
  11. 11.
    Thompson R B, Margetan F J, Haldipur P, Yu L, Li A, Panetta P, and H Wasan, Wave Motion 45 (2008) 655.  https://doi.org/10.1016/j.wavemoti.2007.09.008.CrossRefGoogle Scholar
  12. 12.
    Lifshits I M, and Parkhomovskii G D, Zh Eksp Teor Fiz 20 (1950) 175.Google Scholar
  13. 13.
    Bhatia A B, J Acoust Soc Am 31 (1959) 1140.  https://doi.org/10.1121/1.1907843.CrossRefGoogle Scholar
  14. 14.
    Hirsekorn S, J Acoust Soc Am 72 (1982) 1021.  https://doi.org/10.1121/1.388233.CrossRefGoogle Scholar
  15. 15.
    Thompson B R, Imaging Complex Media Acoust Seism Waves (2002).  https://doi.org/10.1007/3-540-44680-x_9.
  16. 16.
    Calvet M, and Margerin L, J Acoust Soc Am 131 (2012) 1843.  https://doi.org/10.1121/1.3682048.CrossRefGoogle Scholar
  17. 17.
    Rokhlin S I, Li J, and Sha G, J Acoust Soc Am 137 (2015) 2655.  https://doi.org/10.1121/1.4919333.CrossRefGoogle Scholar
  18. 18.
    Kube C M, and Turner J A, Wave Motion 57 (2014) 182.  https://doi.org/10.1016/j.wavemoti.2015.04.002.CrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
    Connolly G D, Modelling of the Propagation of Ultrasound Through Austenitic Steel Welds, Imperial College of London (2009).Google Scholar
  22. 22.
    Ghoshal G, and Turner J A, IEEE Trans Ultrason Ferroelectr Freq Control 56 (2009) 1419.  https://doi.org/10.1109/tuffc.2009.1197.CrossRefGoogle Scholar
  23. 23.
    Shahjahan S, Rupin F, Aubry A, Chassignole B, Fouquet T, and Derode A, Ultrasonics 54 (2014) 358.  https://doi.org/10.1016/j.ultras.2013.06.012.CrossRefGoogle Scholar
  24. 24.
    Van Pamel A, Brett C R, Huthwaite P, and Lowe M J, J Acoust Soc Am 138 (2015) 2326.  https://doi.org/10.1121/1.4931445.CrossRefGoogle Scholar
  25. 25.
    Nakahata K, Sugahara H, Barth M, Köhler B, and Schubert F, Ultrasonics 67 (2016) 18.  https://doi.org/10.1016/j.ultras.2015.12.013.CrossRefGoogle Scholar
  26. 26.
    Shivaprasad S, Balasubramaniam K, and Krishnamurthy C V, AIP Conf Proc 1706 (2016), 070013.  https://doi.org/10.1063/1.4940531.CrossRefGoogle Scholar
  27. 27.
  28. 28.
    Pandala A, Shivaprasad S, Krishnamurthy C V, and Balasubramaniam K, 8th International Symposium NDT Aerospace (2016), pp 1–9.Google Scholar
  29. 29.
    Volker A, Soares M D E, Melo S E, Wirdelius H, Lundin P, Krix D, Kok P, and Martinez-de Guerenu A, in Proceedings of the 19th WCNDT (2016), pp 1–8.Google Scholar
  30. 30.
    Shivaprasad S, Pandala A, Krishnamurthy C V, and Balasubramaniam K, J Acoust Soc Am 144 (2018) 3313.  https://doi.org/10.1121/1.5082298.CrossRefGoogle Scholar
  31. 31.
    Van Pamel A, Ultrasonic Inspection of Highly Scattering Materials, Imperial College of London (2015).Google Scholar
  32. 32.
    Van Pamel A, Sha G, Rokhlin S I, and Lowe M J S, Proc R Soc A Math Phys Eng Sci 473 (2017) 20160738.  https://doi.org/10.1098/rspa.2016.0738.CrossRefGoogle Scholar
  33. 33.
    Van Pamel A, Sha G, Lowe M J S, and Rokhlin S I, J Acoust Soc Am 143 (2018) 2394.  https://doi.org/10.1121/1.5031008.CrossRefGoogle Scholar
  34. 34.
    Krishnamurthy A, Karthikeyan S, Krishnamurthy C V, and Balasubramaniam K, AIP Conf Proc 820 II (2006) 1894.  https://doi.org/10.1063/1.2184750.
  35. 35.
    Krishnamurthy A, Mohan K V, Karthikeyan S, Krishnamurthy C V, and Balasubramaniam K, J Korean Soc Nondestruct Test 26 (2006) 153.Google Scholar
  36. 36.
    Purushothaman P, Krishnamurthy C V, and Balasubramaniam K, Proc Natl Semin Exhib Non-Destructive Eval NDE (2011) 8.Google Scholar
  37. 37.
    Saivathan A, Model Assisted Ultrasonic Phased Array Inspection for Thick Components, Indian Institute of Technology Madras (2010).Google Scholar
  38. 38.
    Alavudeen S, Krishnamurthy C V, Balasubramaniam K, Pugazhendhi D M, Raghava G, and Gandhi P, J Press Vessel Technol 132 (2010) 011501.  https://doi.org/10.1115/1.4000375.CrossRefGoogle Scholar
  39. 39.
    Balasubramaniam K, Alavudeen S, and Krishnamurthy C V, Technique for imaging using array of focused virtual sources using phased excitation. US Patent No: 2012/0291553 A1 (2016).Google Scholar
  40. 40.
    SIMSONIC, Ray Based Ultrasonic Simulator n.d. http://www.dhvani-research.com/simson.php. Accessed Sept 16 2018.
  41. 41.
    SIMUT, Conventional and Phased Array Simulator le n.d. http://www.dhvani-research.com/simut.php. Accessed 16 Sept 2018.
  42. 42.
    Shivaprasad S, Krishnamurthy C V, and Balasubramaniam K, Int J Adv Eng Sci Appl Math (2018).  https://doi.org/10.1007/2fs12572-018-0209-x.
  43. 43.
    Adithya R, Shivaprasad S B, Balasubramaniam K, and Krishnamurthy C V. Indian Natl Semin Exhib Non-Destruct Eval NDE 2016 (2016).Google Scholar
  44. 44.
    Shivaprasad S, Saini A, Purushothaman P, Balasubramaniam K, and Krishnamurthy C V, in Proceedings of the 19th WCNDT (2016), pp 1–7.Google Scholar
  45. 45.
    Uchic M D, Comput Methods Microstruct Relation (2011).  https://doi.org/10.1007/978-1-4419-0643-4_2.Google Scholar
  46. 46.
    Spowart J E, Mullens H M, and Puchala B T, JOM 55 (2003) 35.  https://doi.org/10.1007/s11837-003-0173-0.CrossRefGoogle Scholar
  47. 47.
    Uchic M D, Groeber M A, Dimiduk D M, and Simmons J P, Scr Mater 55 (2006) 23.  https://doi.org/10.1016/j.scriptamat.2006.02.039.CrossRefGoogle Scholar
  48. 48.
    Maire E, Buffière J Y, Salvo L, Blandin J J, Ludwig W, and Létang J M, Adv Eng Mater 3 (2001) 539.  https://doi.org/10.1002/1527-2648(200108)3:8<539::AID-ADEM539>3.0.CO;2-6.CrossRefGoogle Scholar
  49. 49.
    Landis E N, and Keane D T, Mater Charact 61 (2010) 1305.  https://doi.org/10.1016/j.matchar.2010.09.012.CrossRefGoogle Scholar
  50. 50.
    Anderson M P, Grest G S, and Srolovitz D J, Philos Mag B Phys Condens Matter Stat Mech Electron Opt Magn Prop 59 (1989) 293.  https://doi.org/10.1080/13642818908220181.CrossRefGoogle Scholar
  51. 51.
    Krill C E III, and Chen L-Q, Acta Mater 50 (2002) 3059. http://dx.doi.org/10.1016/S1359-6454(02)00084-8.CrossRefGoogle Scholar
  52. 52.
    Qin R S, and Bhadeshia H K, Mater Sci Technol 26 (2010) 803.  https://doi.org/10.1179/174328409x453190.CrossRefGoogle Scholar
  53. 53.
    Voronoi G, J Für Die Reine Und Angew Math 134 (1908) 198.CrossRefGoogle Scholar
  54. 54.
    Kumar S, and Singh R N, J Am Ceram Soc 78 (1995) 728.  https://doi.org/10.1111/j.1151-2916.1995.tb08240.x.CrossRefGoogle Scholar
  55. 55.
    Espinosa H D, and Zavattieri P D, Mech Mater 35 (2003) 365.  https://doi.org/10.1016/s0167-6636(02)00287-9.CrossRefGoogle Scholar
  56. 56.
    Zhang K S, Wu M S, and Feng R, Int J Plast 21 (2005) 801.  https://doi.org/10.1016/j.ijplas.2004.05.010.CrossRefGoogle Scholar
  57. 57.
    Ghazvinian E, Diederichs M S, and Quey R, J Rock Mech Geotech Eng 6 (2014) 506.  https://doi.org/10.1016/j.jrmge.2014.09.001.CrossRefGoogle Scholar
  58. 58.
    Zhu H X, Thorpe S M, and Windle A H, Philos Mag A 81 (2001) 2765.  https://doi.org/10.1080/01418610010032364.CrossRefGoogle Scholar
  59. 59.
    Suzudo T, and Kaburaki H, Phys Lett Sect A Gen At Solid State Phys 373 (2009) 4484.  https://doi.org/10.1016/j.physleta.2009.09.072.CrossRefGoogle Scholar
  60. 60.
    Bathe K-J, Finite Element Procedures, 2nd edi, Prentice-Hall (2006).Google Scholar
  61. 61.
    COMSOL, LiveLink for MATLAB User’s Guide: Version 5.2 (2015).Google Scholar
  62. 62.
    Drozdz M B, Efficient Finite Element Modelling of Ultrasound Waves in Elastic Media, Imperial College London (2008).Google Scholar
  63. 63.
    Schmerr L W, Fundam Ultrasonic Nondestruct Eval (1998).  https://doi.org/10.1007/978-1-4899-0142-2.CrossRefGoogle Scholar
  64. 64.
    Ledbetter H M, and Naimon E R, J Phys Chem Ref Data 3 (1974) 897.  https://doi.org/10.1063/1.3253150.CrossRefGoogle Scholar
  65. 65.
    Barber C B, Dobkin D P, and Huhdanpaa H, ACM Trans Math Softw 22 (1996) 469.  https://doi.org/10.1145/235815.235821.CrossRefGoogle Scholar
  66. 66.
  67. 67.
    Groeber M A, and Jackson M A, Integr Mater Manuf Innov 3 (2014) 5.  https://doi.org/10.1186/2193-9772-3-5.CrossRefGoogle Scholar
  68. 68.
    Quey R, Dawson P R, and Barbe F, Comput Methods Appl Mech Eng 200 (2011) 1729.  https://doi.org/10.1016/j.cma.2011.01.002.CrossRefGoogle Scholar
  69. 69.
  70. 70.
  71. 71.
    Ogilvy J A, Appl Math Model 14 (1990) 237.  https://doi.org/10.1016/0307-904x(90)90014-v.CrossRefGoogle Scholar
  72. 72.
  73. 73.
  74. 74.
    Slawinski M A, Waves and Rays in Elastic Continua, World Scientific (2010).  https://doi.org/10.1142/7486.
  75. 75.
    Virieux J, Geophysics 49 (1984) 1933.  https://doi.org/10.1190/1.1441605.CrossRefGoogle Scholar
  76. 76.
    Saenger E H, and Bohlen T, Geophysics 69 (2004) 583.  https://doi.org/10.1190/1.1707078.CrossRefGoogle Scholar
  77. 77.
    Saenger E H, Gold N, and Shapiro S A, Wave Motion 31 (2000) 77.  https://doi.org/10.1016/s0165-2125(99)00023-2.CrossRefGoogle Scholar
  78. 78.
    Lisitsa V, and Vishnevskiy D, Geophys Prospect 58 (2010) 619.  https://doi.org/10.1111/j.1365-2478.2009.00862.x.CrossRefGoogle Scholar
  79. 79.
    Di Bartolo L, Dors C, and Mansur W J, Geophys Prospect 63 (2015) 1097.  https://doi.org/10.1111/1365-2478.12210.CrossRefGoogle Scholar
  80. 80.
    Pandala A, Shivaprasad S, Krishnamurthy C V, and Balasubramaniam K, Nondestruct Test Diagon 2 (2018) 11.  https://doi.org/10.26357/bnid.2018.008.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Centre for Non-destructive Evaluation, Department of Mechanical EngineeringIndian Institute of Technology, MadrasChennaiIndia
  2. 2.Department of PhysicsIndian Institute of Technology, MadrasChennaiIndia

Personalised recommendations