Transactions of the Indian Institute of Metals

, Volume 72, Issue 10, pp 2663–2672 | Cite as

Determination and Verification of Johnson–Cook Parameters for 430 Ferritic Steels via Different Gage Lengths

  • Mehmet Erdi KorkmazEmail author
Technical Paper


Stainless steels, especially ferritic ones, are used in heat-resistant devices, home appliances, construction materials due to their high corrosion resistance, high and low temperature availability, mechanical strength and long-time durability. In this study, it was aimed to identify the Johnson–Cook (JC) parameters of the AISI 430 ferritic stainless steel depending on the gage length variation. After preparing tensile samples with seven different gage lengths (0.5, 1, 2, 5, 10, 20 and 50 mm), the samples were subjected to tensile tests at the same deformation speed (2 mm/s). Here, the variation of the yield stress depending on the strain rate was investigated because the deformation speed was kept constant and the gage length was changed. The tensile tests at different strain rates were conducted on the same setup. The materials were also subjected to the tensile tests at different temperatures on reference strain rate to perceive the change of the yield stresses at elevated temperatures. As a result of these tests, the JC parameters of the material were determined. Finally, by using these parameters, the tensile test simulations of the material were performed in the finite element simulation package. When the obtained experimental and numerical data were compared, it was determined that there was a deviation of 3.17% between them and the validity of the JC parameters of the material was proved.


AISI 430 Gage length Johnson–Cook Finite element method Simulation 


Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Ožbolt J, Oršanić F, Balabanić G, and Kušter M, Int J Fract 178 (2012) 233.CrossRefGoogle Scholar
  2. 2.
    Özyürek D, Mater Des 29 (2008) 597.CrossRefGoogle Scholar
  3. 3.
    Hu Y, Yang C B, Teh L H, and Yang Y-B J Constr Steel Res 148 (2018) 198.CrossRefGoogle Scholar
  4. 4.
    Bu Y, and Gardner L, J Constr Steel Res 148 (2018) 49.CrossRefGoogle Scholar
  5. 5.
    Alinia S, Khamedi R, and Ahmadi I, Exp Tech 42 (2018) 645.CrossRefGoogle Scholar
  6. 6.
    Cullen G W, and Korkolis Y P, Int J Solids Struct 50 (2013) 1621.CrossRefGoogle Scholar
  7. 7.
    Silva C C, Farias J P, Miranda H C, Guimarães R F, Menezes J W A, and Neto M A M, Mater Charact 59 (2008) 528.CrossRefGoogle Scholar
  8. 8.
    Tsay L W, Yu S C, Chyou S-D, and Lin D-Y, Corros Sci 49 (2007) 4028.CrossRefGoogle Scholar
  9. 9.
    Wang L, Song C, Sun F, Li L, and Zhai Q, Mater Des 30 (2009) 49.CrossRefGoogle Scholar
  10. 10.
    Lakshminarayanan A K and Balasubramanian V, Exp Tech 37 (2013) 59.CrossRefGoogle Scholar
  11. 11.
    Shanmugam K, Lakshminarayanan A K, and Balasubramanian V, Int J Press Vessels Pip 86 (2009) 517.CrossRefGoogle Scholar
  12. 12.
    Song B, and Sanborn B, Int J Impact Eng 119 (2018) 40.CrossRefGoogle Scholar
  13. 13.
    Luan Q, Britton T B, and Jun T-S, Mater Sci Eng A 734 (2018) 385.CrossRefGoogle Scholar
  14. 14.
    Yaghoobi M, and Voyiadjis G Z, Acta Mater 151 (2018) 1.CrossRefGoogle Scholar
  15. 15.
    LeBlanc M M, and Lassila D H, Exp Tech 17 (1993) 37.CrossRefGoogle Scholar
  16. 16.
    Li G, and Liu D, Exp Tech 39 (2015) 30.CrossRefGoogle Scholar
  17. 17.
    Korkmaz M E, Determination of Material Constitutive Equation Parameters of Nickel Based Super Alloy (Nimonic 80A) and Investigation of Their Applicability, Ph D Thesis, Karabük University Graduate School of Natural and Applied Sciences (2018).Google Scholar
  18. 18.
    Majzoobi G H, Kazemi P, and Pipelzadeh M K, Exp Tech 40 (2016) 609.CrossRefGoogle Scholar
  19. 19.
    Kıvak T, Measurement 50 (2014) 19.CrossRefGoogle Scholar
  20. 20.
    Günay M, Korkmaz M E, and Yaşar N, Mechanika 23 (2017) 432.CrossRefGoogle Scholar
  21. 21.
    Luccarelli P G, Pataky G J, Sehitoglu H, and Foletti S, Int J Solids Struct 115116 (2017) 270.CrossRefGoogle Scholar
  22. 22.
    Vu T D, Durville D, and Davies P, Int J Solids Struct 58 (2015) 106.CrossRefGoogle Scholar
  23. 23.
    Malakizadi A, Cedergren S, Sadik I, and Nyborg L, Simul Model Pract Theory 60 (2016) 40.CrossRefGoogle Scholar
  24. 24.
    Lotfi M, Amini S, and Aghaei M, Simul Model Pract Theory 87 (2018) 226.CrossRefGoogle Scholar
  25. 25.
    Ezilarasan C, Senthil Kumar V S, and Velayudham A, Simul Model Pract Theory 40 (2014) 192.CrossRefGoogle Scholar
  26. 26.
    Maranhão C, and Paulo-Davim J, Simul Model Pract Theory 18 (2010) 139.CrossRefGoogle Scholar
  27. 27.
    Korkmaz M E, and Günay M, Arab J Sci Eng 43 (2018) 4863.CrossRefGoogle Scholar
  28. 28.
    Dorogoy A, and Rittel D, Exp Mech 49 (2009) 881.CrossRefGoogle Scholar
  29. 29.
    Wang B, and Liu Z, Simul Model Pract Theory 55 (2015) 63.CrossRefGoogle Scholar
  30. 30.
    Immanuel R J, and Panigrahi S K, Mater Sci Eng A 712 (2018) 747.CrossRefGoogle Scholar
  31. 31.
    Akbari M, Buhl S, Leinenbach C, and Wegener K, J Mater Process Technol 234 (2016) 58.CrossRefGoogle Scholar
  32. 32.
    Lalwani D I, Mehta N K, and Jain P K, J Mater Process Technol 209 (2009) 5305.CrossRefGoogle Scholar
  33. 33.
    Gupta S, Abotula S, and Shukla A, J Eng Mater Technol 136 (2014) 034502.CrossRefGoogle Scholar
  34. 34.
    Shrot A, and Bäker M, Comput Mater Sci 52 (2012) 298.CrossRefGoogle Scholar
  35. 35.
    Banerjee A, Dhar S, Acharyya S, Datta D, and Nayak N, Mater Sci Eng A 640 (2015) 200.CrossRefGoogle Scholar
  36. 36.
    Mylonas G I, and Labeas G N, Exp Tech 38 (2014) 26.CrossRefGoogle Scholar
  37. 37.
    Silva C M A, Rosa P A R, and Martins P A F, Exp Tech 40 (2016) 569.CrossRefGoogle Scholar
  38. 38.
    Vaziri M R, Salimi M, and Mashayekhi M, Simul Model Pract Theory 18 (2010) 1286.CrossRefGoogle Scholar
  39. 39.
    Jafarian F, Umbrello D, and Jabbaripour B, Simul Model Pract Theory 66 (2016) 273.CrossRefGoogle Scholar
  40. 40.
    Korkmaz M E, Verleysen P, and Günay M, Trans Indian Inst Met 71 (2018) 2945.CrossRefGoogle Scholar
  41. 41.
    Quan G, Pan J, and Wang X, Appl Sci 6 (2016) 66.CrossRefGoogle Scholar
  42. 42.
    Samantaray D, Mandal S, and Bhaduri A K, Comput Mater Sci 47 (2009) 568.CrossRefGoogle Scholar
  43. 43.
    Calvo J, Cabrera J M, Guerrero-Mata M P, De La Garza M, and Puigjaner J F, in Proceedings of the 10th International Conference on Technology of Plasticity, ICTP 2011, Aachen (2011), p 892.Google Scholar
  44. 44.
    Tan X, Guo W, Gao X, Liu K, Wang J, and Zhou P, Exp Tech 41 (2017) 191.CrossRefGoogle Scholar
  45. 45.
    Sjöberg T, Kajberg J, and Oldenburg M, Eng Fract Mech 178 (2017) 231.CrossRefGoogle Scholar
  46. 46.
    Wen H, and Mahmoud H, J Constr Steel Res 134 (2017) 1.CrossRefGoogle Scholar
  47. 47.
    Yaghoubshahi M, Alinia M M, and Milani A S, J Constr Steel Res 128 (2017) 789.CrossRefGoogle Scholar
  48. 48.
    Stute B, Krupp V, and von Lieres E, Simul Model Pract Theory 33 (2013) 115.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringKarabük UniversityKarabükTurkey

Personalised recommendations