Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2547–2556 | Cite as

A Novel Self-Magnetizing Roasting Process for Recovering Fe from Low-Grade Pyrite Cinder and Blast Furnace Sludge

  • Qiang Zhao
  • Jilai XueEmail author
  • Wen Chen
Technical Paper


A novel self-magnetizing roasting process was developed to recover Fe from low-grade pyrite cinder and blast furnace sludge. Blast furnace sludge is a weaker reductant than conventional reductants but can be used as a reductant in magnetizing roasting reactions. The optimal magnetizing roasting–magnetic separation process conditions were 40% blast furnace sludge: 60% pyrite cinder (by weight), roasting temperature 750 °C, roasting time 30 min, magnetic field intensity 0.2 T, and grinding fineness − 0.074 mm 91.35%. The iron concentrate produced was of grade 59.23%, the recovery was 71.65%, and acceptable hazardous elements (Pb, S, and Zn) were present. The iron concentrate will therefore act as a suitable sintering or pelletizing feedstock. The results indicate that blast furnace sludge is a suitable reductant for self-magnetizing roasting pyrite cinder. Developing the method will allow these solid wastes to be used in economically and environmentally beneficial ways.


Pyrite cinder Blast furnace sludge Self-magnetizing roasting 



The authors wish to express their thanks to the Natural Science Foundation of China (No. 5157041410) for the financial support of this research.

Author Contributions

QZ conducted the experimental work and prepared the manuscript; JX directed the research work and modified the manuscript; WC participated in the design of the research work at different stages.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.


  1. 1.
    Zhang S, and Xiao R, Greenh Gases Sci Technol 1 (2018) 106–117.CrossRefGoogle Scholar
  2. 2.
    Kerkez D V, Tomin M R B, Dalmacija M B, Tomasevic D D, Roncevic S D, Pucar G V, and Dalmacija B D, Hem Ind 3 (2015) 231–239.CrossRefGoogle Scholar
  3. 3.
    Fernandez-Caliani J C, Environ Geochem Health 1 (2012) 123–139.CrossRefGoogle Scholar
  4. 4.
    Kovkov I V, and Abdrakhimov V Z, Glass Ceram 3 (2011) 128–130.CrossRefGoogle Scholar
  5. 5.
    Tiberg C, Bendz D, Theorin C, and Kleja D B, Appl Geochem 85 (2017) 106–117.CrossRefGoogle Scholar
  6. 6.
    Alp I, Deveci H, Yazici E Y, Turk T, and Sungun Y H, J Hazard Mater 1 (2009) 144–149.CrossRefGoogle Scholar
  7. 7.
    Moanta A, Mohanu I, Paceagiu J, Nastac D C, Petre I, and Fechet R M, Rom J Mater 2 (2017) 276–281.Google Scholar
  8. 8.
    Wang Y L, Xiao L, Liu H X, Qian P, Ye S F, and Chen Y F, Hydrometallurgy 179 (2018) 192–197.CrossRefGoogle Scholar
  9. 9.
    Ding J, Han P W, Lu C C, Qian P, Ye S F, and Chen Y F, Int J Miner Metall Mater 11 (2017) 1241–1250.CrossRefGoogle Scholar
  10. 10.
    Yang C C, Zhu D Q, Pan J, Li S W, and Tian H Y, Int J Miner Metall Mater 9 (2018) 982–987.Google Scholar
  11. 11.
    Gao Z F, Li L S, Wu Z J, Shen X M, Lu H H, and Su S H, J Iron Steel Res Int 8 (2013) 27–33.CrossRefGoogle Scholar
  12. 12.
    Foldi C, Andree C A, and Mansfeldt T, Environ Sci Pollut Res 20 (2015) 15755–15762.CrossRefGoogle Scholar
  13. 13.
    Foldi C, Dohrmann R, and Mansfeldt T, Environ Sci Process Impacts 11 (2015) 1915–1922.CrossRefGoogle Scholar
  14. 14.
    Malina J, and Radenovic A, Chem Biochem Eng Q 4 (2014) 491–498.Google Scholar
  15. 15.
    Trinkel V, Mallow O, Aschenbrenner P, Rechberger H, and Fellner J, Ind Eng Chem Res 19 (2016) 5590–5597.CrossRefGoogle Scholar
  16. 16.
    Omran M, and Fabritius T, Miner Eng 127 (2018) 265–276.CrossRefGoogle Scholar
  17. 17.
    Mikhailov I, Komarov S, Levina V, Gusev A, Issi J P, and Kuznetsov D, J Hazard Mater 321 (2017) 557–565.CrossRefGoogle Scholar
  18. 18.
    Andersson A, Ahmed H, Rosenkranz J, Samuelsson C, and Björkman B, ISIJ Int 2 (2017) 262–271.CrossRefGoogle Scholar
  19. 19.
    Drobikova K, Placha D, Motyka O, Gabor R, Mamulova Kutlakova K, Vallova S, and Seidlerova J, Waste Manag 48 (2016) 471–477.CrossRefGoogle Scholar
  20. 20.
    Drobikova K, Vallova S, Motyka O, Mamulova Kutlakova K, Placha D, and Seidlerova J, Waste Manag 79 (2018) 30–37.CrossRefGoogle Scholar
  21. 21.
    Fan X H, Deng Q, Gan M, and Wang H B, J Iron Steel Res Int 5 (2015) 371–376.CrossRefGoogle Scholar
  22. 22.
    Samouhos M, Taxiarchou M, Pilatos G, Tsakiridis P E, Devlin E, and Pissas M, Miner Eng 105 (2017) 36–42.CrossRefGoogle Scholar
  23. 23.
    Rath S S, Tripathy S K, Rao D S, and Biswal S K, Trans Indian Inst Met 4 (2018) 861–872.CrossRefGoogle Scholar
  24. 24.
    Das S K, Prasad R, and Singh R P, Trans Indian Inst Met 6 (2018) 1354–1359.Google Scholar
  25. 25.
    Li C, Sun H H, and Bai J, J Hazard Mater 2 (2010) 71–77.CrossRefGoogle Scholar
  26. 26.
    Zhang K, Chen X L, Guo W C, Luo H J, Gong Z J, Li B W, and Wu W F, Plos One 10 (2017) 2–17.Google Scholar
  27. 27.
    Zhang Y H, Zhang J, Zhang Y J, Li H C, and Zhao P, J Wuhan Univ Technol 3 (2013) 116–119.Google Scholar
  28. 28.
    Faris N, Tardio J, Ram R, Bhargava S, and Pownceby M I, Miner Eng 114 (2017) 37–48.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Metallurgical and Ecological EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Changsha Research Institute of Mining and Metallurgy Co., LtdChangshaChina

Personalised recommendations