Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2503–2510 | Cite as

Magnesium–Graphene Composite Coated on SS Mesh as Cathode Material for Rechargeable Magnesium ion Battery

  • Latha MalyalaEmail author
  • Sahithi Thatipamula
  • Vatsala Rani Jetti
Technical Paper
  • 41 Downloads

Abstract

Rechargeable magnesium battery with a magnesium anode and magnesium–graphene (Mg–G) composite coated on SS mesh as cathode and ionic liquid electrolyte was developed. Magnesium–graphene composite was prepared by using the semi-metallurgy method. The composite was analyzed by field emission scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and X-ray diffraction studies. The electrochemical performance of magnesium–graphene composite was analyzed by cyclic voltammetry, impedance spectroscopy, and charge–discharge studies. The cyclic voltammetry of Mg–G cell showed good reversibility, and impedance spectra revealed reduced resistance of the cell. The cell-specific capacity was 55 mAh g−1, and average discharge voltage was 1.15 V at 0.1 mA cm−2 constant current. The cell showed good cycle life (80 cycles) indicating stable discharge capacity and electrochemical behavior.

Keywords

Magnesium ion batteries Cathode material Composite Ionic liquid Magnesium–graphene (Mg–G) 

Notes

Acknowledgements

Authors are thankful to Director CSIR-IICT, IICT/Pubs./2019/017, for his constant encouragement and support and also thankful to CSIR, New Delhi, under the TAP SUN program (NWP-0056) for funding and AcSIR.

References

  1. 1.
    Armand M, Endres F, MacFarlane DR, Ohno H, and Scrosati B, Nat Mater 8 (2009) 621.CrossRefGoogle Scholar
  2. 2.
    Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, and Levi E, Nature 407 (2000) 724.CrossRefGoogle Scholar
  3. 3.
    Park M, Zhang X, Chung M, Less G B, and Sastry A M, J Power Sources 195 (2010) 7904.CrossRefGoogle Scholar
  4. 4.
    Ma Z, Shao G, Wang G, Du J, and Zhang Y, Ionics 19 (2013) 437.CrossRefGoogle Scholar
  5. 5.
    Zhang H, Xu Y, Zhao C, Yang X, and Jiang Q, Electrochim Acta 83 (2012) 341.CrossRefGoogle Scholar
  6. 6.
    Pei B, Yao H, Zhang W, and Yang Z, J Power Sources 220 (2012) 317.CrossRefGoogle Scholar
  7. 7.
    Bazito F F C, and Torresi R M, J Braz Chem Soc 17 (2006) 627.CrossRefGoogle Scholar
  8. 8.
    Kucinskis G, Bajars G, and Kleperis J, J Power Sources 240 (2013) 66.CrossRefGoogle Scholar
  9. 9.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, and Firsov A A, Science 306 (2004) 666.CrossRefGoogle Scholar
  10. 10.
    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, and Firsov A A, Nature 438 (2005) 197.CrossRefGoogle Scholar
  11. 11.
    Zhang Y B, Tan Y W, Stormer H L, and Kim P, Nature 438 (2005) 201.CrossRefGoogle Scholar
  12. 12.
    Altland A, Phys Rev Lett 97 (2006) 236802.CrossRefGoogle Scholar
  13. 13.
    Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, and Roth S, Nature 446 (2007) 60.CrossRefGoogle Scholar
  14. 14.
    Schedin F, Geim A K, Morozov S V, Hill E W, Blake P, Katsnelson M I, and Novoselov K S, Nat Mater 6 (2007) 652.CrossRefGoogle Scholar
  15. 15.
    Geim A K, and Novoselov K S, Nat Mater 6 (2007) 183.CrossRefGoogle Scholar
  16. 16.
    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, and Geim A K, Proc Natl Acad Sci USA 102 (2005) 10451.CrossRefGoogle Scholar
  17. 17.
    Ritter K A, and Lyding J W, Nanotechnology 19 (2008) 015704.CrossRefGoogle Scholar
  18. 18.
    Berger C, Song Z M, Li X B, Wu X S, Brown N, Naud C, Mayou D, Li T B, Hass J, Marchenkov A N, Conrad E H, First P N, and de Heer W A, Science 312 (2006) 1191.CrossRefGoogle Scholar
  19. 19.
    Ohta T, Bostwick A, Seyller T, Horn K, and Rotenberg E, Science 313 (2006) 951.CrossRefGoogle Scholar
  20. 20.
    de Heera W A, Berger C, Wu X, First P N, Conrad E H, Li X, Li T, Sprinkle M, Hass J, Sadowski M L, Potemski M, and Martinez G, Solid State Commun 143 (2007) 92.CrossRefGoogle Scholar
  21. 21.
    Hass J, de Heer W A, and Conrad E H, J Phys Condens Matter 20 (2008) 323202.CrossRefGoogle Scholar
  22. 22.
    Rollings E, Gweon G H, Zhou S Y, Mun B S, McChesney J L, Hussain B S, Fedorov A V, First P N, de Heer W A, and Lanzara A, J Phys Chem Solids 67 (2006) 2172.CrossRefGoogle Scholar
  23. 23.
    Sutter P W, Flege J I, and Sutter E A, Nat Mater 7 (2008) 406.CrossRefGoogle Scholar
  24. 24.
    Dedkov Y S, Fonin M, Rüdiger U, and Laubschat C, Phys Rev Lett 100 (2008) 107602.CrossRefGoogle Scholar
  25. 25.
    Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, and Hong B H, Nature 457 (2009) 706.CrossRefGoogle Scholar
  26. 26.
    Reina A, Jia X T, Ho J, Nezich D, Son H B, Bulovic V, Dresselhaus M S, and Kong J, Nano Lett 9 (2009) 30.CrossRefGoogle Scholar
  27. 27.
    Coraux J, N’Diaye A T, Busse C, and Michely T, Nano Lett 8 (2008) 565.CrossRefGoogle Scholar
  28. 28.
    Liu N, Luo F, Wu H, Liu Y, Zhang C, and Chen J, Adv Funct Mater 18 (2008) 1518.CrossRefGoogle Scholar
  29. 29.
    Rashad M, Pan F, Tang A, Asif M, She J, Gou J, Mao J, and Hu H. J Compos Mater 49 (2015) 1.CrossRefGoogle Scholar
  30. 30.
    Gruzdev M S, Ramenskaya L M, Chervonova U V, and Kumeev R S, Russ J General Chem 79 (2009) 1720.CrossRefGoogle Scholar
  31. 31.
    Muthoosamy K, Bai RG, Abubakar IB, Sudheer SM, Lim HN, Loh H-S, Huang NM, Chia C H, and Manickam S, Int J Nanomed 10 (2015) 1505.Google Scholar
  32. 32.
    Luo W, Wang B, Wang X, Stickle W F, and Ji X, Chem Commun 49 (2013) 10676.CrossRefGoogle Scholar
  33. 33.
    Krishnamurthy G, and Namitha R, J Chil Chem Soc 58 (2013) 1930.CrossRefGoogle Scholar
  34. 34.
    Kailasa S K, and Wu H-F, Analyst 137 (2012) 4490.CrossRefGoogle Scholar
  35. 35.
    Ai K, Liu Y, Lu L, Cheng X, and Huo L, J Mater Chem 21 (2011) 3365.CrossRefGoogle Scholar
  36. 36.
    Cho E S, Ruminski A M, Aloni S, Liu Y-S, Guo J, and Urban J J, Nat Commun 7 (2016) 10804.CrossRefGoogle Scholar
  37. 37.
    Wu Z-S, Zhou G, Yin L-C, Ren W, Li F, and Cheng H-M, Nano Energy 1 (2012) 107.CrossRefGoogle Scholar
  38. 38.
    Huang H H, Shih W C, and Lai C H, Appl Phys Lett 96 (2010) 193505-1.Google Scholar
  39. 39.
    Gregory T D, Hoffman R J, and Winterton R C, J Electrochem Soc 137 (1990) 775.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • Latha Malyala
    • 1
    Email author
  • Sahithi Thatipamula
    • 1
  • Vatsala Rani Jetti
    • 1
  1. 1.Polymers and Functional Materials DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations