Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2457–2463 | Cite as

Microstructure and High-Temperature Friction–Wear Properties of Laser-Cladded Cr–Ni–Al2O3–TiO2 Composite Coating

  • Li Jiahong
  • Kong DejunEmail author
Technical Paper


A Cr–Ni–Al2O3–TiO2 composite coating was fabricated on H13 hot work mold steel using a laser cladding. The surface and cross-sectional morphologies, chemical elements and phases of obtained coating were analyzed using an electron scanning microscope, energy-dispersive spectroscope and X-ray diffractometer, respectively. The friction–wear behaviors of Cr–Ni–Al2O3–TiO2 composite coating at 400, 500 and 600 °C were investigated using a high-temperature wear tester, and the worn morphologies and wear mechanism were also analyzed. The results show that the laser-cladded Cr–Ni–Al2O3–TiO2 composite coating is composed of Ni, Cr and intermetallic compounds of NiCr, Al0.34Cr0.21 and Al0.5Ni3Ti0.5, which effectively increase the oxidation resistance of H13 hot work mold steel. The average coefficients of friction (COFs) of Cr–Ni–Al2O3–TiO2 coating at 400, 500 and 600 °C are 0.205, 0.375 and 0.293, respectively, and the corresponding wear rates are 5.337 × 10−6, 5.919 × 10−6 and 6.162 × 10−6 mm3 N−1 s−1, respectively, which increase with the increase in temperatures. The wear mechanism at 400 and 500 °C is abrasive wear, while that at 600 °C is adhesive wear with the knot-like wear scar.


Cr–Ni–Al2O3–TiO2 composite coating Laser cladding (LC) Coefficient of friction (COF) High-temperature wear Wear mechanism 



  1. 1.
    Min Y G, Wu X H, Wang R, Li L, and Xu L P, J Iron Steel Res Int 13 (2006) 44.CrossRefGoogle Scholar
  2. 2.
    Li J Y, Chen Y L, and Hu J H, Mater Sci Eng A 640 (2015) 16.CrossRefGoogle Scholar
  3. 3.
    Bailey N S, Katinas C, and Shin Y C, J Mater Process Technol 247 (2017) 223.CrossRefGoogle Scholar
  4. 4.
    Liu J H, Wang G X, Bao Y P, Yang Y, Yao W, and Cui X N, J Iron Steel Res Int 19 (2012) 01.CrossRefGoogle Scholar
  5. 5.
    Tazegul O, Dylmishi V, and Cimenoglu H, Arch Civ Mech Eng 163 (2016) 344.CrossRefGoogle Scholar
  6. 6.
    Chen S, Liang J, Liu C, Sun K, and Mazumder J, Appl Surface Sci 258 (2011) 1443.CrossRefGoogle Scholar
  7. 7.
    Xu X, Mi G Y, Chen L, Xiong L D, Jiang P, Shao X Y, and Wang C M, J Alloys Compds 715 (2017) 362.CrossRefGoogle Scholar
  8. 8.
    Comesana R, Quintero F, Lusquinos F, Pascual M J, Boutinguiza M, Duran A, and Pou J, Acta Biomater 6 (2010) 953.CrossRefGoogle Scholar
  9. 9.
    Zhang C, Yang Y, Miao L L, Ma Y D, Zhang X, Cui Y H, Dong Y C, Chen X G, Wang L G, Liu Z G, and Wang Y G, Surf Coat Technol 350 (2018) 550.CrossRefGoogle Scholar
  10. 10.
    Yao H L, Hu X Z, Bai X B, Wang H T, Chen Q Y, and Ji G C, Surf Coat Technol 351 (2018) 177.CrossRefGoogle Scholar
  11. 11.
    He R G, Wang J Y, He M, Yang H L, and Ruan J M, Ceram Int 44 (2018) 10961.CrossRefGoogle Scholar
  12. 12.
    Bian H M, Yang Y, Wang Y, Tian W, Jiang H F, Hu Z J, and Yu W M, J Alloys Compds 525 (2012) 63.CrossRefGoogle Scholar
  13. 13.
    Bian H M, Yang Y, Wang Y, and Tian W, Powder Technol 219 (2012) 257.CrossRefGoogle Scholar
  14. 14.
    Wang H B, Li H, Zhu H B, Cheng FJ, Wang D P, and Li Z X, Mater Lett 153 (2015) 110.CrossRefGoogle Scholar
  15. 15.
    Liu F, Jia J H, Yi G W, Wang W Z, and Shan Y, Tribol Int 84 (2015) 1.CrossRefGoogle Scholar
  16. 16.
    Deng Z Q, Liu M, Mao J, Deng CM, and Zhang X F, Vacuum 145 (2017) 39.CrossRefGoogle Scholar
  17. 17.
    Dai X R, Yan D R, Yang Y, Chu Z H, Chen X G, and Song J S, Ceram Int 43 (2017) 6340.CrossRefGoogle Scholar
  18. 18.
    Yang Y, Yan D R, Dong Y C, Chen X G, Wang L, Chu Z H, Zhang J X, and He J N, Surf Coat Technol 235 (2013) 417.CrossRefGoogle Scholar
  19. 19.
    Yang Y, Wang Y, Tian W, Wang Z, Li C G, Zhao Y, and Bian H, Scr Mater 60 (2009) 578.CrossRefGoogle Scholar
  20. 20.
    Wang D S, Tian Z J, Shen L D, Liu Z D, and Huang Y H, Rare Met 28 (2009) 465.CrossRefGoogle Scholar
  21. 21.
    Tazegul O, Muhaffel F, Meydanogli O, Bayydogan M, Kayali E S, and Cimenoglu H, Surf Coat Technol 258 (2014) 168.CrossRefGoogle Scholar
  22. 22.
    Yang Y, Chen X G, Wang L, Chu Z H, Liu Z, Dong Y C, Yan D R, Zhang J X, He J N, and Wang L, Tribol Int 81 (2015) 97.CrossRefGoogle Scholar
  23. 23.
    Girolamo G D, Brentari A, Blasi C, and Serra E, Ceram Int 40 (2014) 12861.CrossRefGoogle Scholar
  24. 24.
    Wahab J A, Ghazali M J, Sajuri Z, Otsuka Y, Jayaprakash M, Nakamura S, and Baharin A F S, Ceram Int 43 (2017) 6410.CrossRefGoogle Scholar
  25. 25.
    Yang Y, Yan D R, Dong Y C, Chen X G, Wang L, Chu Z H, Zhang J X, and He J N, Vacuum 96 (2013) 39.CrossRefGoogle Scholar
  26. 26.
    Li J, Feng A X, Zhou J Z, Sun Y J, Chen H, Huang S, and Meng X K, Vacuum 157 (2018) 320.CrossRefGoogle Scholar
  27. 27.
    Li J H, and Kong DJ, Materials 11 (2018) 137.CrossRefGoogle Scholar
  28. 28.
    Quan C, He Y D, and Zhang J, Surf Coat Technol 292 (2016) 11.CrossRefGoogle Scholar
  29. 29.
    Feng J, Ferreira M G S, and Vilar R, Surf Coat Technol 88 (1996) 212.CrossRefGoogle Scholar
  30. 30.
    Gao X S, Tian Z J, Liu Z D, and Shen L D, Trans Nonferrous Met Soc China 22 (2012) 2498.CrossRefGoogle Scholar
  31. 31.
    Mohsen A D A B I, and Ahmad Ali A M A D E H, Trans Nonferrous Met Soc China 25 (2015) 3959.CrossRefGoogle Scholar
  32. 32.
    Huang C J, Li W Y, Planche M P, Liao H L, and Montavon G, J Mater Sci Technol 33 (2017) 507.CrossRefGoogle Scholar
  33. 33.
    Skirl S, Krause R, Wiederhorn S M, and Rödel J, J Am Ceram Soc 84 (2001) 2034.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.College of Mechanical EngineeringChangzhou UniversityChangzhouChina

Personalised recommendations