Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2403–2416 | Cite as

Effect of Pulsed Current on the Microstructure, Mechanical Properties and Corrosion Behavior of Ni-Based Alloy/Super Duplex Stainless Steel Dissimilar Welds

  • Jalal KangazianEmail author
  • Morteza Shamanian
Technical Paper
  • 45 Downloads

Abstract

This work addressed the effect of pulsed current (PC) and pass number on the microstructure, mechanical properties and corrosion behavior of Incoloy 825/UNS S32750 welds. The alloys were welded using PC and continuous current techniques. Mechanical properties of the weldments were examined using hardness, Charpy and transverse tensile tests. General corrosion and pitting corrosion behavior of the weld metals were studied using potentiodynamic polarization and electrochemical impedance spectroscopy tests. The weld metals had a dual-phase microstructure including ferrite and austenite phases. Employing the PC mode resulted in an increase in the ferrite content of the weld metals, which led to the improvement in impact resistance. Based on the results of tensile tests, the weakest part of the weldments was Incoloy 825 base. The weld metals at the root pass showed the weakest corrosion behavior. Overall, use of the PC mode improved the properties of the weldments.

Keywords

Ni-based superalloy Super duplex stainless steel Dissimilar welding Corrosion behavior Mechanical properties 

Notes

References

  1. 1.
    Neissi R, Shamanian M, and Hajihashemi M, J Mater Eng Perform 25 (2016) 2017.  https://doi.org/10.1007/s11665-016-2033-4.CrossRefGoogle Scholar
  2. 2.
    Lv J, Liang T, Wang C, and Guo T, J Alloys Comput 658 (2016) 657.  https://doi.org/10.1016/j.jallcom.2015.10.246.CrossRefGoogle Scholar
  3. 3.
    Zanotto F, Grassi V, Merlin M, Balbo A, and Zucchi F, Corros Sci 94 (2015) 38.  https://doi.org/10.1016/j.corsci.2015.01.035.CrossRefGoogle Scholar
  4. 4.
    Yousefieh M, Shamanian M, and Saatchi A, J Iron Steel Res Int 18 (2011) 65.  https://doi.org/10.1016/s1006-706x(12)60036-3.CrossRefGoogle Scholar
  5. 5.
    Geng S, Sun J, Guo L, and Wang H, J Manuf Process 19 (2015) 32. http://dx.doi.org/10.1016/j.jmapro.2015.03.009.CrossRefGoogle Scholar
  6. 6.
    Verma J, and Taiwade R V, J Mater Eng Perform 25 (2016) 4706.  https://doi.org/10.1007/s11665-016-2329-4.CrossRefGoogle Scholar
  7. 7.
    Mortezaie A, and Shamanian M, J Press Vessels Pip 116 (2014) 37.  https://doi.org/10.1016/j.ijpvp.2014.01.002.CrossRefGoogle Scholar
  8. 8.
    Ramkumar K D, Dev S, Saxena V, Choudhary A, Arivazhagan N, and Narayanan S, Mater Des 87 (2015) 663.  https://doi.org/10.1016/j.matdes.2015.08.075.CrossRefGoogle Scholar
  9. 9.
    Ramkumar K D, Sridhar R, Periwal S, Oza S, Saxena V, Hidad P, Arivazhagan N, and Weld E B, Mater Des 68 (2015) 158.  https://doi.org/10.1016/j.matdes.2014.12.032.CrossRefGoogle Scholar
  10. 10.
    Linton V M, Laycock N J, Thomsen S J, and Klumpers A, Eng Fail Anal 11 (2004) 243.  https://doi.org/10.1016/j.engfailanal.2003.05.011.CrossRefGoogle Scholar
  11. 11.
    Elshawesh F, Elhoud A, Zeglam W, Abusowa K, and Mesalem A, J Fail Annal Preven 15 (2015) 7.  https://doi.org/10.1007/s11668-014-9900-9.CrossRefGoogle Scholar
  12. 12.
    Naffakh H, Shamanian M, and Ashrafizadeh F, J Mater Proc Technol 9 (2008) 3628.  https://doi.org/10.1016/j.jmatprotec.2008.08.019.CrossRefGoogle Scholar
  13. 13.
    Ramkumar R D, Oza S, Periwal S, Arivazhagan N, Sridhar R, and Narayanan S, Ciência and Tecnologia dos Materiais 27 (2015) 41.  https://doi.org/10.1016/j.ctmat.2015.04.004.CrossRefGoogle Scholar
  14. 14.
    Kangazian J, Trans Indian Inst Met 71 (2018) 1747.  https://doi.org/10.1007/s12666-018-1309-9.CrossRefGoogle Scholar
  15. 15.
    Devendranath R S K, and Arivazhagan R N, 27 (2014) 1018.  https://doi.org/10.1007/s40195-014-0116-5.CrossRefGoogle Scholar
  16. 16.
    Hosseini H S, Shamanian M, and Kermanpur A, Int J Press Vessels Pip 144 (2016) 18.  https://doi.org/10.1016/j.ijpvp.2016.05.004.CrossRefGoogle Scholar
  17. 17.
    Sayyar N, Shamanian M, and Niroumand B, J Mater Process Technol 262 (2018) 562.  https://doi.org/10.1016/j.jmatprotec.2018.07.020.CrossRefGoogle Scholar
  18. 18.
    Kangazian J, Shamanian M, and Ashrafi A, J Manuf Process 29 (2017): 376.  https://doi.org/10.1016/j.jmapro.2017.08.012.CrossRefGoogle Scholar
  19. 19.
    Yousefieh M, Shamanian M, and Saatchi A, J Alloys Compd 509 (2011) 782.  https://doi.org/10.1016/j.jallcom.2010.09.087.CrossRefGoogle Scholar
  20. 20.
    Ramkumar K D, Singh A, Raghuvanshi S, Bajpai A, Solanki T, Arivarasu M, Arivazhagan N, and Narayanan S, J Manuf Process 19 (2015) 212.  https://doi.org/10.1016/j.jmapro.2015.04.005.CrossRefGoogle Scholar
  21. 21.
    Lippold J C, Welding Matellurgy and Weldbility, Wiley, New York (2015).Google Scholar
  22. 22.
    Lippold J C, and Kotecki D J, Welding Metallurgy and Weldability of Stainless Steels, Wiley, Hoboken (2005).Google Scholar
  23. 23.
    Eghlimi A, Shamanian M, and Raeissi K, Surf. Coat. Technol 244 (2014) 45.  https://doi.org/10.1016/j.surfcoat.2014.01.047.CrossRefGoogle Scholar
  24. 24.
    Sayiram G, and Arivazhagan N, Mater Charact 102 (2015) 180.  https://doi.org/10.1016/j.matchar.2015.03.006.CrossRefGoogle Scholar
  25. 25.
    Sireesha M, Shankar V, Albert S K, and Sundaresan S, MSEA 292 (2000) 74.  https://doi.org/10.1016/S0921-5093(00)00969-2.CrossRefGoogle Scholar
  26. 26.
    Mirshekari G R, Tavakoli E, Atapour M, and Sadeghian B, Mater Des 55 (2014) 905.  https://doi.org/10.1016/j.matdes.2013.10.064.CrossRefGoogle Scholar
  27. 27.
    Ramkumar K D, Patel S D, Praveen S S, Choudhury D J, Prabaharan P, Arivazhagan N, and Xavior M A, Mater Des 62 (2014) 175.  https://doi.org/10.1016/j.matdes.2014.05.019.CrossRefGoogle Scholar
  28. 28.
    Ramkumar K D, Harendra A, Anil A, Atharva M, Vishnu C, Arun D, Vijay M G, Sunny W, Chatterjee A, Abraham J, and Abraham J, J Manuf Process 30 (2017) 27.  https://doi.org/10.1016/j.jmapro.2017.09.001.CrossRefGoogle Scholar
  29. 29.
    Sadeghian M, Shamanian M, and Shafyei A, Mater Des 60 (2014) 678.  https://doi.org/10.1016/j.matdes.2014.03.057.CrossRefGoogle Scholar
  30. 30.
    Brytan Z, Niagaj J, and Reiman Ł, Appl Surf Sci 388 (2016) 160.  https://doi.org/10.1016/j.apsusc.2016.01.260.CrossRefGoogle Scholar
  31. 31.
    Dehnavi V, Shoesmith D W, Li B, Yari M, and Yang X, Mater Chem Phys 161 (2015) 49.  https://doi.org/10.1016/j.matchemphys.2015.04.058.CrossRefGoogle Scholar
  32. 32.
    Zadorozne N S, Giordano C M, Rodríguez M A, Carranza R M, and Rebak R B, Electrochim Acta 76 (2012) 94.  https://doi.org/10.1016/j.electacta.2012.04.157.CrossRefGoogle Scholar
  33. 33.
    Aliramezani R, Raeissi K, Santamaria M, and Hakimizad A, Surf Coat Technol 329 (2017) 250.  https://doi.org/10.1016/j.surfcoat.2017.09.056.CrossRefGoogle Scholar
  34. 34.
  35. 35.
    Zhang Z, Jing H, Xu L, Han Y, and Zhao L, Appl Surf Sci 394 (2017) 297.  https://doi.org/10.1016/j.apsusc.2016.10.047.CrossRefGoogle Scholar
  36. 36.
    Abdollahi A, Shamanian M, Golozar M A, Int J Adv Manuf Technol 97 (2018) 687.  https://doi.org/10.1007/s00170-018-1963-4.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations