Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2329–2348 | Cite as

Hot Corrosion Study of 9Cr–1Mo Boiler Steel Exposed to Different Molten Salt Mixtures

  • Sumit MahajanEmail author
  • Rahul Chhibber
Technical Paper
  • 53 Downloads

Abstract

The present study is an attempt to observe the hot corrosion behavior of P91 boiler steel when exposed to different molten salt environments at higher temperature. The hot corrosion behavior was observed for temperature range 550–850 °C under the application of air, 40% Na2SO4 + 60% V2O5 (salt 1), 40% K2SO4 + 60% NaCl (salt 2), 50% Na2SO4 + 50% NaCl (salt 3), 40% Na2SO4 + 40% K2SO4 + 10% NaCl + 10% KCl (salt 4). Thermogravimetric study results in parabolic oxidation kinetics when the specimen was exposed to temperature 550 °C and 650 °C, whereas multistage oxidation kinetics was observed at temperatures above 650 °C. An acceleration in the oxidation process was observed with the increase in the exposure temperature, also causing an increase in the oxide scale thickness. Specimen exposed to salt mixtures containing more Na2SO4 and NaCl (salt 2 and salt 3) experienced severe corrosion attack at 750 °C and 850 °C. Thick, non-adherent, and porous magnetite and hematite layers were observed on the outer scale of the specimen which resulted in higher weight gain of the alloy. The corrosion rate of P91 alloy exposed to different salt mixtures was in the order: salt 3 > salt 2 > salt 1 > salt 4 > air.

Keywords

P91 Hot corrosion Molten salts XRD SEM/EDS Hot-dip aluminizing Shot peening 

Notes

References

  1. 1.
    Rapp R A, Corros Sci 44 (2000) 209.CrossRefGoogle Scholar
  2. 2.
    Chatterjee U K, Bose S K, and Roy S K, (2001) ISBN: 0-8247-9920-8.Google Scholar
  3. 3.
    Patel N S, and Pavlil V, Crit Rev Solid State Mater Sci 42 (2017) 83.Google Scholar
  4. 4.
    Skrifvars B J, Backman R, and Vakkilainen E, Corros Sci 50 (2008) 1274.CrossRefGoogle Scholar
  5. 5.
    Gibbons T B, Trans Indian Inst Met 66 (2013) 631.CrossRefGoogle Scholar
  6. 6.
    Rapp RA, Mater Sci Eng 87 (1987) 319.CrossRefGoogle Scholar
  7. 7.
    Singh H, Puri D, and Prakash S, Rev Adv Mater Sci 16 (2007) 27.Google Scholar
  8. 8.
    He J, Xiong W, and Long K, Adv Mech Eng 8 (2016) 1–9.Google Scholar
  9. 9.
    Dionisio L, Acebo T G, and Castro F, Corros Sci 46 (2004) 613CrossRefGoogle Scholar
  10. 10.
    Khanna A S, Rodriguez P, and Gnanamoorthy J B, Oxid Met 26 (1986) 171.CrossRefGoogle Scholar
  11. 11.
    Gond D, Chawla V, Puri D, and Prakash S, JMMCE 9 (2010) 749.CrossRefGoogle Scholar
  12. 12.
    Gond D, Chawla V, Puri D, and Prakash S, JMMCE 9 (2010) 593.CrossRefGoogle Scholar
  13. 13.
    Ghosh D, and Mitra S K, JMEPEG 25 (2016) 421.CrossRefGoogle Scholar
  14. 14.
    Mittal R, Goyal L, and Singh B, Asian Rev Mech Eng 2 (2013)19.Google Scholar
  15. 15.
    Mittal R, Goyal L, and Singh B, IJRMET 3 (2013) 2249.Google Scholar
  16. 16.
    Grabke H J, Reese E, and Spiegel M, Corros Sci 37 (1995)1023.CrossRefGoogle Scholar
  17. 17.
    Chicardi A, Cordoba J M, and Gotor F J, Corros Sci 102 (2016) 168CrossRefGoogle Scholar
  18. 18.
    Betancur J D, Nomura K, Wang C J, and Tabares J A, Hyperfine Interact 238 (2017) 88.CrossRefGoogle Scholar
  19. 19.
    Skrifvars B J, Westen M, Hupa M, and Salmenoja K, Corros Sci 52 (2010) 1011.CrossRefGoogle Scholar
  20. 20.
    Mohanty B P, and Shores D A, Corros Sci 46 (2004) 2893.CrossRefGoogle Scholar
  21. 21.
    Naraparaju R, Christ H J, Renner FU, and Kostka A, Oxid Met 76 (2011) 233.CrossRefGoogle Scholar
  22. 22.
    Bandla D S, Verma P, Chattopadhyay K, and Singh V, JMEPEG 27 (2018) 6443.CrossRefGoogle Scholar
  23. 23.
    Muhammad A A, and Lee D B, Coatings 7 (2017) 31.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.IIT JodhpurJodhpurIndia

Personalised recommendations