Advertisement

Transactions of the Indian Institute of Metals

, Volume 72, Issue 9, pp 2311–2318 | Cite as

Reliability Analysis of Brinell Hardness Results for Aged Alumix321/SiC Composites

  • Canser GülEmail author
  • Nilay Çömez
  • Can Çivi
  • Hülya Durmuş
Technical Paper
  • 50 Downloads

Abstract

Aluminum/SiC composites are widely employed in the automotive industry. Aluminum composites can be produced by hot pressing which forms a final product with a low porosity level and a denser structure. Homogeneous distribution of reinforcement particles, the level of porosity, and heat treatment not only affect the mechanical properties of the composites but also the reliability of their mechanical test results. In this study, Brinell hardness test reliability analyses of the hot-pressed Alumix321/SiC composites were carried out. The effects of increasing SiC amount and aging treatment on the reliability of hardness test results were discussed. Reliability analysis revealed that the aging treatment and increasing amount of SiC reinforcement decreased the reliability of the hardness test results. The reason for this was researched and resulting cases were discussed.

Keywords

Alumix321 Powder metallurgy Composite Reliability Aging Hardness 

List of Symbols

wt%

Weight percentage (%)

P

Pressing force (MPa)

Wa

Weighed in the air (g)

Ww

Weighed in the water (g)

ρa

Actual density (g/cm3)

ρw

Density of the water (g/cm3)

HB

Brinell hardness value (HB)

SHB

Standard deviation of HB

\(\overline{\text{HB}}\)

Average deviation of HB

f(HB)

Distribution function of HB

dHB

Cumulative distribution function of HB

SiC

Silicon carbide

B4C

Boron carbide

Al2O3

Alumina

TiB2

Titanium diboride

Notes

Acknowledgements

The authors would like to thank ECKA Granules Company for the provision of powder materials.

References

  1. 1.
    Madeira S, Miranda G, Carneiro V H, Soares D, Silva F S, and Carvalho O, Mater Design 93 (2016) 409.  https://doi.org/10.1016/j.matdes.2015.12.147.CrossRefGoogle Scholar
  2. 2.
    Mosleh-Shirazi S, Akhlaghi F, and Li D Y, Trans Nonferrous Met Soc China 26 (2016) 1801.  https://doi.org/10.1016/S1003-6326(16)64294-2.CrossRefGoogle Scholar
  3. 3.
    Manivannan I, Ranganathan S, Gopalakannan S, and Suresh S, Trans Indian Inst Met 71 (2018) 1897.  https://doi.org/10.1007/s12666-018-1321-0.CrossRefGoogle Scholar
  4. 4.
    Karabulut Ş, Gökmen U, and Çinici H, Compos Part B Eng 93 (2016) 43.  https://doi.org/10.1016/j.compositesb.2016.02.054.CrossRefGoogle Scholar
  5. 5.
    Singh R P, Gupta G K, and Paliwal M, Trans Indian Inst Met 71 (2018) 2443.  https://doi.org/10.1007/s12666-018-1375-z.CrossRefGoogle Scholar
  6. 6.
    Candan S, and Bilgic E, Mater Lett 58 (2004) 2787.  https://doi.org/10.1016/j.matlet.2004.04.009.CrossRefGoogle Scholar
  7. 7.
    Singh K K, Singh S, and Shrivastava A K, Mater Today Proc 4 (2017) 8960.  https://doi.org/10.1016/j.matpr.2017.07.248.CrossRefGoogle Scholar
  8. 8.
    Sijo M T, and Jayadevan K R, Procedia Technol 24 (2016) 379.  https://doi.org/10.1016/j.protcy.2016.05.052.CrossRefGoogle Scholar
  9. 9.
    Annigeri U K, and Veeresh Kumar G B, Mater Today Proc 5 (2018) 11233.  https://doi.org/10.1016/j.matpr.2018.02.002.CrossRefGoogle Scholar
  10. 10.
    Olaya-Luengas L, Estremera-Perez L, Munoz L, and Suarez O M, J Mater Eng Perform 19 (2010) 1370.  https://doi.org/10.1007/s11665-010-9635-z.CrossRefGoogle Scholar
  11. 11.
    Çivi C, Tahrali N, and Atik E, Mater Design 53 (2014) 383.  https://doi.org/10.1016/j.matdes.2013.07.034.CrossRefGoogle Scholar
  12. 12.
    Lakshmipathy J, and Kulendran B, Tribol Ind 36 (2014) 117.Google Scholar
  13. 13.
    Prasad D S, Shoba C, and Ramanaiah N, J Mater Res Technol 3 (2014) 79.  https://doi.org/10.1016/j.jmrt.2013.11.002.CrossRefGoogle Scholar
  14. 14.
    Birolini A, Reliability Engineering: Theory and Practice, Springer, Firenze (2013).Google Scholar
  15. 15.
    Gnedenko B V, and Ushakov I A, Probabilistic Reliability Engineering, (ed) Falk J A, Wiley, Canada (1995).Google Scholar
  16. 16.
    Montgomery D C, and Runger G C, Applied Statistics and Probability for Engineers, Wiley, New York (2010).Google Scholar
  17. 17.
    Ireson W G, Coombs C F, and Moss R Y, Handbook of Reliability Engineering and Management, McGraw-Hill Professional, New York (1996).Google Scholar
  18. 18.
    Yurkov A L, Jhuravleva N V, and Lukin E S, J Mater Sci 29 (1994) 6551.  https://doi.org/10.1007/BF00354021.CrossRefGoogle Scholar
  19. 19.
    Schneider J M, Bigerelle M, and Iost A, Mater Sci Eng A 262 (1999) 256.  https://doi.org/10.1016/S0921-5093(98)01000-4.CrossRefGoogle Scholar
  20. 20.
    Wang A Q, Guo H D, Han H H, and Xie J P, Kem Ind 66 (2017) 345.  https://doi.org/10.15255/KUI.2016.025.CrossRefGoogle Scholar
  21. 21.
    Farè S, Lecis N, and Vedani M, J Metall 2011 (2011). http://dx.doi.org/10.1155/2011/959643.
  22. 22.
    Pogatscher S, Antrekowitsch H, Leitner H, Sologubenko A S, and Uggowitzer P J, Scripta Mater 68 (2013) 158.  https://doi.org/10.1016/j.scriptamat.2012.10.006.CrossRefGoogle Scholar
  23. 23.
    Liu X, Zhang P, Xu Q, He S, Dou Z, and Wang H, J Alloys Compd, 764 (2018) 460.  https://doi.org/10.1016/j.jallcom.2018.06.124.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Metallurgical and Materials Engineering, Engineering FacultyManisa Celal Bayar UniversityManisaTurkey
  2. 2.Mechanical Engineering, Engineering FacultyManisa Celal Bayar UniversityManisaTurkey

Personalised recommendations