Advertisement

Numerical Analysis of Conventional and Modified Equal Channel Angular Pressing

  • M. EbrahimiEmail author
Technical Paper
  • 13 Downloads

Abstract

While conventional equal channel angular pressing (ECAP) has been widely investigated as the prominent severe plastic deformation method, no detailed work has been carried out on the modified ECAP techniques. So, this work deals with the numerical characterization of 7075 aluminum billet processed by conventional and modified ECAP methods. It has been found that T-shaped ECAP is the best technique to choose from the effective plastic strain point of view. Also, the highest plastic strain distribution uniformity and concomitant least required pressing load belong to the cross-ECAP condition. Moreover, conventional ECAP process should be selected if the minimum temperature rise and damage have been considered. Eventually, shear plane mode of oblique, V-shape, and X-shape is attained for the conventional, T-shaped, and cross-ECAP conditions, respectively.

Keywords

Finite element analysis Conventional and modified ECAP methods Strain behavior Temperature rise Damage prediction Required pressing load 

Notes

Acknowledgements

The author would like to acknowledge Iran National Science Foundation (INSF) for the financial support of this work under the Grant Number of 94810544.

References

  1. 1.
    Xun Y, Mohamed F A, Mater Sci Eng A 528 (2011) 5446.  https://doi.org/10.1016/j.msea.2011.03.015.CrossRefGoogle Scholar
  2. 2.
    Valiev R Z, Estrin Y, Horita Z, Langdon T G, Zehetbauer M J, Zhu Y T, JOM 58 (2006) 33.  https://doi.org/10.1007/s11837-006-0213-7.CrossRefGoogle Scholar
  3. 3.
    Valiev R Z, Langdon T G, Prog Mater Sci 51 (2006) 881.  https://doi.org/10.1016/j.pmatsci.2006.02.003.CrossRefGoogle Scholar
  4. 4.
    Djavanroodi F, Daneshtalab M, Ebrahimi M, Mater Sci Eng A 535 (2012) 115.  https://doi.org/10.1016/j.msea.2011.12.050.CrossRefGoogle Scholar
  5. 5.
    Shaeri M H, Salehi M T, Seyyedein S H, Abutalebi M R, Park J K, Mater Des 57 (2014) 250.  https://doi.org/10.1016/j.matdes.2014.01.008.CrossRefGoogle Scholar
  6. 6.
    Miyamoto H, Harada K, Mimaki T, Vinogradov A, Hashimoto S, Corros Sci 50 (2008) 1215.  https://doi.org/10.1016/j.corsci.2008.01.024.CrossRefGoogle Scholar
  7. 7.
    Pande C S, Cooper K P, Prog Mater Sci 54 (2009) 689.  https://doi.org/10.1016/j.pmatsci.2009.03.008.CrossRefGoogle Scholar
  8. 8.
    Djavanroodi F, Ebrahimi M, Rajabifar B, Akramizadeh S, Mater Sci Eng A 528 (2010) 745.  https://doi.org/10.1016/j.msea.2010.09.080.CrossRefGoogle Scholar
  9. 9.
    Ebrahimi M, Gode C, Prog Nat Sci Mater Int 27 (2017) 244.  https://doi.org/10.1016/j.pnsc.2017.03.002.CrossRefGoogle Scholar
  10. 10.
    Han S Z, Goto M, Lim C, Kim C J, Kim S, J Alloys Compd 434–435 (2007) 304.  https://doi.org/10.1016/j.jallcom.2006.08.179.CrossRefGoogle Scholar
  11. 11.
    Djavanroodi F, Omranpour B, Ebrahimi M, Sedighi M, Prog Nat Sci Mater Int 22 (2012) 452.  https://doi.org/10.1016/j.pnsc.2012.08.001.CrossRefGoogle Scholar
  12. 12.
    Shaeri M H, Salehi M T, Seyyedein S H, Abutalebi M R, Park J K, J Alloys Compd 576 (2013) 350.  https://doi.org/10.1016/j.jallcom.2013.05.182.CrossRefGoogle Scholar
  13. 13.
    Wei W, Zhang W, Wei K X, Zhong Y, Cheng G, Hu J, Mater Sci Eng A 516 (2009) 111.  https://doi.org/10.1016/j.msea.2009.03.001.CrossRefGoogle Scholar
  14. 14.
    Yoon S C, Kim H S, Mater Sci Eng A 490 (2008) 438.  https://doi.org/10.1016/j.msea.2008.01.066.CrossRefGoogle Scholar
  15. 15.
    Azushima A, Aoki K, Mater Sci Eng A 337 (2002) 45.  https://doi.org/10.1016/s0921-5093(02)00005-9.CrossRefGoogle Scholar
  16. 16.
    Nagasekhar A V, Kim H S, Met Mater Int 14 (2008) 565.  https://doi.org/10.3365/met.mat.2008.10.565.CrossRefGoogle Scholar
  17. 17.
    Djavanroodi F, Ebrahimi M, Mater Sci Eng A 527 (2010) 7593.  https://doi.org/10.1016/j.msea.2010.08.022.CrossRefGoogle Scholar
  18. 18.
    Rosochowski A, Olejnik L, Int J Mater Form 1 (2008) 483.  https://doi.org/10.1007/s12289-008-0108-y.CrossRefGoogle Scholar
  19. 19.
    Shaban Ghazani M, Eghbali B, Comput Mater Sci 74 (2013) 124.  https://doi.org/10.1016/j.commatsci.2013.02.006.CrossRefGoogle Scholar
  20. 20.
    Xiong Y, He T, Guo Z, He H, Ren F, Volinsky A A, Mater Sci Eng A 563 (2013) 163.  https://doi.org/10.1016/j.msea.2012.11.068.CrossRefGoogle Scholar
  21. 21.
    Zhang X, Hua L, Liu Y, Mater Sci Eng A 535 (2012) 153.  https://doi.org/10.1016/j.msea.2011.12.057.CrossRefGoogle Scholar
  22. 22.
    Yoon S C, Jeong H-G, Lee S,S Kim H , Comput Mater Sci 77 (2013) 202.  https://doi.org/10.1016/j.commatsci.2013.04.054.CrossRefGoogle Scholar
  23. 23.
    Xu S, Zhao G, Ma X, Ren G, J Mater Process Technol 184 (2007) 209.  https://doi.org/10.1016/j.jmatprotec.2006.11.025.CrossRefGoogle Scholar
  24. 24.
    Kim H S, Seo M H, Hong S I, J Mater Process Technol 130 (2002) 497.CrossRefGoogle Scholar
  25. 25.
    Kim H S, Mater Sci Eng A 315 (2001) 122.CrossRefGoogle Scholar
  26. 26.
    Li S, Bourke M A M, Beyerlein I J, Alexander D J, Clausen B, Mater Sci Eng A 382 (2004) 217.  https://doi.org/10.1016/j.msea.2004.04.067.CrossRefGoogle Scholar
  27. 27.
    Luis-Pérez C J, Luri-Irigoyen R, Gastón-Ochoa D, J Mater Process Technol 153–154 (2004) 846.  https://doi.org/10.1016/j.jmatprotec.2004.04.115.CrossRefGoogle Scholar
  28. 28.
    Lee H H, Gangwar K D, Park K T, Woo W, Kim H S, Mater Sci Eng A 682 (2017) 691.  https://doi.org/10.1016/j.msea.2016.11.094.CrossRefGoogle Scholar
  29. 29.
  30. 30.
    Yoon S C, Seo M H, Krishnaiah A, Kim H S, Mater Sci Eng A 490 (2008) 289.  https://doi.org/10.1016/j.msea.2008.01.037.CrossRefGoogle Scholar
  31. 31.
    Kumar P, Panda S S, Mater Today Proc 4 (2017) 2419.  https://doi.org/10.1016/j.matpr.2017.02.092.CrossRefGoogle Scholar
  32. 32.
    Nagasekhar A V, Kim H S, Comput Mater Sci 43 (2008) 1069.  https://doi.org/10.1016/j.commatsci.2008.02.030.CrossRefGoogle Scholar
  33. 33.
    Djavanroodi F, Ebrahimi M, Mater Sci Eng A 527 (2010) 1230.  https://doi.org/10.1016/j.msea.2009.09.052.CrossRefGoogle Scholar
  34. 34.
    Ma Z Y, Pilchak A L, Juhas M C, Williams J C, Scr Mater 58 (2008) 361.  https://doi.org/10.1016/j.scriptamat.2007.09.062.CrossRefGoogle Scholar
  35. 35.
    Shaeri M H, Shaeri M, Ebrahimi M, Salehi M T, Seyyedein S H, Prog Nat Sci Mater Int 26 (2016) 182.  https://doi.org/10.1016/j.pnsc.2016.03.003.CrossRefGoogle Scholar
  36. 36.
    Ebrahimi M, Shaeri M H, Naseri R, Gode C, Mater Sci Eng A 731 (2018) 569.  https://doi.org/10.1016/j.msea.2018.06.080.CrossRefGoogle Scholar
  37. 37.
    Ebrahimi M, Metall Mater Trans A 48 (2017) 6126.  https://doi.org/10.1007/s11661-017-4375-4.CrossRefGoogle Scholar
  38. 38.
    Su J-Q, Nelson T W, Sterling C J, Mater Sci Eng A 405 (2005) 277.  https://doi.org/10.1016/j.msea.2005.06.009.CrossRefGoogle Scholar
  39. 39.
    Sakai T, Belyakov A, Kaibyshev R, Miura H, Jonas J J, Prog Mater Sci 60 (2014) 130.  https://doi.org/10.1016/j.pmatsci.2013.09.002.CrossRefGoogle Scholar
  40. 40.
    Rhodes C G, Mahoney M W, Bingel W H, Calabrese M, Scr Mater 48 (2003) 1451.  https://doi.org/10.1016/s1359-6462(03)00082-4.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MaraghehMaraghehIran

Personalised recommendations