Investigation on the Hot Deformation Behavior of 316L Stainless Steel Using 3D Processing Map
- 51 Downloads
Abstract
Isothermal compression experiments have been adopted to systematically examine hot deformation behavior of 316L stainless steel on a simulator with 0.01–5 s−1 strain rate and 900–1100 °C temperature, and the results demonstrate that, in flow curves, both features of dynamic recrystallization (DRX) and dynamic recovery (DRV) can be observed. Besides, the constitutive model has been established, and the value of activation energy is obtained as 465.532 kJ mol−1. In addition, processing maps of different strains are also constructed. With microstructural observation, it can be found that the flow localization and mischcrystal structure occur while the hot deformation is performed on the instability domains (efficiency of power dissipation, \( \eta \), < 23%). The processing window is located at 0.01–0.056 s−1 strain rate and 1040–1100 °C temperature with the η higher than 35%. The optimal hot compression parameters are 1050 °C–0.01 s−1 with a peak efficiency of 38%, and the corresponding EBSD analysis shows a random distribution of DRX grains.
Keywords
316L stainless steel Hot deformation behavior Constitutive model Processing maps Dynamic recrystallizationNotes
Acknowledgements
This research was sponsored by National Natural Science Foundation of China (No. 2012AA03A501), and Jiangsu Province Key R&D Project of China (No. BE2017127).
References
- 1.Ji H P, Microstructure Prediction Of 316LN Strainless Steel For Dynamic Recrystallization Based On Cellular Automata Method, Ph D Thesis, Yanshan University, China (2013).Google Scholar
- 2.Guo S L, Li D F, Pen H J, Guo Q M, and Hu J, J Nucl Mater410 (2011) 52.CrossRefGoogle Scholar
- 3.Aghaie K M, and Golarzi N, Mater Sci Eng A486 (2008) 641.CrossRefGoogle Scholar
- 4.Han J, Sun J P, Han Y, and Liu H, Acta Metall Sin-Engl30 (2017) 1080.CrossRefGoogle Scholar
- 5.Prasad Y, and Sasidhara S, Hot Working Guide: A Compendium of Processing Maps, ASM International, Ohio (1997).Google Scholar
- 6.Prasad Y V, J Mater Eng Perform12 (2003) 638.CrossRefGoogle Scholar
- 7.Anbuselvan S, and Ramanathan S, Mater Des31 (2010) 2319.CrossRefGoogle Scholar
- 8.Lin Y C, Li L T, Xia Y C, and Jiang Y Qi, J Alloys Compd550 (2013) 438.CrossRefGoogle Scholar
- 9.Sui F L, Xu L X, Chen L Q, and Liu X H, J Mater Process Technol211 (2011) 433.CrossRefGoogle Scholar
- 10.Han Y, Zou D N, Chen Z Y, Fan G W, and Zhang W, Mater Charact62 (2011) 198.CrossRefGoogle Scholar
- 11.Momeni A, and Dehghani K, Mater Sci Eng A527 (2010) 5467.CrossRefGoogle Scholar
- 12.Samantaray D, Mandal S, Kumar V, Albert S K, Bhaduri A K, and Jayakumar T, Mater Sci Eng A552 (2012) 236.CrossRefGoogle Scholar
- 13.Murty S V, Rao B N, and Kashyap B P, J Mater Process Technol166 (2005) 268.CrossRefGoogle Scholar
- 14.Ryan N, Mcqueen H, and Jonas J, Can Metall Q22 (1983) 369.CrossRefGoogle Scholar
- 15.Mataya M, Nilsson E, Brown E, and Krauss G, Metall Mater Trans A34 (2003) 3021.CrossRefGoogle Scholar
- 16.Guo B, Ji H, Liu X, Gao L, Dong R, and Jin M, J Mater Eng Perform21 (2011) 1455.CrossRefGoogle Scholar
- 17.Venugopal S, Mannan S L and Prasad Y V R K, Mater Sci Tech-Lond28 (1993) 715.Google Scholar
- 18.Zhang W H, Sun S H, Zhao D L, Wang B Z, Wang Z H, and Fu W T, Mater Des32 (2011) 4173.CrossRefGoogle Scholar
- 19.Guo B F, Ji H P, Liu X G, Gao L, Dong R M, Jin M, and Zhang Q H, J Mater Eng Perform21 (2012) 1461.Google Scholar
- 20.Wu H, Wen S P, Huang H, Gao K Y, Wu X L, Wang W, and Nie Z R, J Alloy Compd685 (2016) 869.CrossRefGoogle Scholar
- 21.Lin Y C, and Chen X M, Mater Des32 (2011) 1733.CrossRefGoogle Scholar
- 22.Peng X N, Guo H Z, Shi Z F, Qin C, Zhao Z L, and Yao Z K, Mater Sci Eng A605 (2014) 80.CrossRefGoogle Scholar
- 23.Sellars C M, Mc G, and Tegart W J, Int Metall Rev17 (1972) 1.CrossRefGoogle Scholar
- 24.Mirzadeh H, Cabrera J M, and Prado J M, A. Najafizadeh, Mater Sci Eng A528 (2011) 3876.Google Scholar
- 25.Ezatpour H R, Sajjadi S A, Sabzevar M H, and Ebrahimi G R, Mater Sci Eng A550 (2012) 152.CrossRefGoogle Scholar
- 26.Somani M, Muraleedharan K, Prasad Y, and Singh V, Mater Sci Eng A245 (1998) 88.CrossRefGoogle Scholar
- 27.Pan Q L, Li B, Wang Y, Zhang Y W, and Yin Z M, Mater Sci Eng A585 (2013) 371.CrossRefGoogle Scholar
- 28.Somani M, Rao E B, Birla N, Bhatia M, Singh V, and Prasad Y, Metall Trans A23 (1992) 2849.CrossRefGoogle Scholar
- 29.Luo R, The Design and Fabrication of a New Austenitic Heat-Resisting Alloy, and its Workability and Deformation Mechanism, Ph D Thesis, Jiangsu University, China (2016).Google Scholar
- 30.Xi T, Yang C G, Shahzad M B, Yang K, Mater Des87 (2015) 303.CrossRefGoogle Scholar
- 31.Zhang C, Zhang L W, Shen W F, Liu C R, Xia Y N, Li R Q, Mater Des90 (2016) 804.CrossRefGoogle Scholar