Advertisement

Microstructure and Mechanical Behavior of Friction-Stir-Welded 2017A-T451 Aluminum Alloy

  • O. Mimouni
  • R. BadjiEmail author
  • A. Kouadri-David
  • R. Gassaa
  • N. Chekroun
  • M. Hadji
Technical Paper
  • 11 Downloads

Abstract

In this work, friction stir welding of 2017A-T451 aluminum alloy has been investigated using different tool rotational speeds varying from 950 to 1250 rpm. The study revealed remarkable effect of the rotational speed on both the microstructure and the mechanical behavior of the weld joint. Significant grain growth was noticed in the heat-affected zone (HAZ), whereas the grain size of the nugget zone (NZ) was insensitive to the rotational speed variation. Increasing the tool rotational speed from 950 to 1250 rpm improved the stirring of the material and shifted the fracture location from the NZ to the HAZ. Local tensile characterization highlighted the heterogeneity of the mechanical behavior that was related to microstructural heterogeneity across the weld joint. Brittle behavior was observed in the NZ, whereas a typical elastic–plastic behavior was detected in the HAZ.

Keywords

Al–Cu alloys Friction stir welding Microstructure Local mechanical behavior 

Notes

Acknowledgements

The authors would like to thank Mr Loic Joanny for SEM observations and EDS analyses. The financial support of the Aeronautical Research and Development Centre and the Research Centre in Industrial Technologies is also acknowledged.

References

  1. 1.
    Dursun T, and Soutis C, Mater Des 56 (2014) 862.CrossRefGoogle Scholar
  2. 2.
    Shude J, Ruofei H, Liguo Z, Xiangchen M, and Zan L, Trans Indian Inst Met 71 (2018) 2057.CrossRefGoogle Scholar
  3. 3.
    Aydin H, Tutar M, Durmuş A, Bayram A, and Sayaca T, Trans Indian Inst Met 65 (2012) 21.CrossRefGoogle Scholar
  4. 4.
    Aydın H, Bayram A, Uguz A, and Akay K S, Mater Des 30 (2009) 2211.CrossRefGoogle Scholar
  5. 5.
    Olga V, and Flores A, Scr Mater 38 (1998) 703.CrossRefGoogle Scholar
  6. 6.
    Thomas W M, and Dawes C, Weld J 75 (1996) 41.Google Scholar
  7. 7.
    Tongne A, Jahazi Feulvarch M, and Desrayaud E C, J Mater Proc Technol 221 (2015) 269.CrossRefGoogle Scholar
  8. 8.
    Zhang Z H, Li W Y, Feng Y, Li J L, and Chao Y J, Acta. Mater 92 (2015) 117.CrossRefGoogle Scholar
  9. 9.
    Moghadam D G, Farhangdoost K, and Nejad R M, Metall Mater Trans B 47 (2016) 2048.CrossRefGoogle Scholar
  10. 10.
    Chen Y C, Feng J C, and Liu H J, Mater Charact 60 (2009) 476.CrossRefGoogle Scholar
  11. 11.
    Sato Y S, Kokawav H, Enomoto M, Jogan S, and Hashimoto T, Metall Mater Trans A 30 (1999) 3125.CrossRefGoogle Scholar
  12. 12.
    Sato Y S, Park S H C, and Kokawa H, Metall Mater Trans A 32 (2001) 3033.CrossRefGoogle Scholar
  13. 13.
    Svensson E, Karlsson L, Larsson H, Karlsson B, Fazzini M, and Karlsson J, Sci Technol Weld J 5 (2000) 285.CrossRefGoogle Scholar
  14. 14.
    Von Strombeck A, Dos Santos J F, Torster F, Laureano P, and Kocak M, Proceedings of the 1st International Friction Stir Welding Conference, Thousand Oaks, CA, USA, Cambridge (UK): TWI (1999).Google Scholar
  15. 15.
    Sato Y S, and Kokawa H, Metall Mater Trans A 32 (2001) 3023.CrossRefGoogle Scholar
  16. 16.
    Khan N Z, Siddiquee A N, Khan Z A, and Mukhopadhyay A K, J Alloys Compd 695 (2017) 2902.CrossRefGoogle Scholar
  17. 17.
    Su J Q, Nelson T W, Mishra R, and Mahoney M, Acta Mater 51 (2003) 713.CrossRefGoogle Scholar
  18. 18.
    Murr L E, Liuand G, and Mc Clure J C, J Mater Sci Lett 16 (1997) 1801.CrossRefGoogle Scholar
  19. 19.
    Sato Y S, Kokawa H, Enomoto M, and Jogan S, Metall Mater Trans A 30 (1999) 2429.CrossRefGoogle Scholar
  20. 20.
    Liu H J, Fujii H, and Nogi K, J Mater Sci 40 (2005) 3297.CrossRefGoogle Scholar
  21. 21.
    Yong Z, Zhengping L, Keng Y, and Linzhao H, Mater Des 65 (2015) 675.CrossRefGoogle Scholar
  22. 22.
    Ericsson M, and Sandström R, Int J Fat 25 (2003) 1379.CrossRefGoogle Scholar
  23. 23.
    Zhou C, Yang X, and Luan G, Mater Chem Phys 98 (2006) 285.CrossRefGoogle Scholar
  24. 24.
    Tajiri A, Uematsu Y, Kakiuchi T, Tozaki Y, Suzuki Y, and Afrinaldi, Int J Fat 80 (2015) 192.CrossRefGoogle Scholar
  25. 25.
    Deng C, Wang H, Gong B, Li X, and Lei Z, Int J Fat 83 (2016) 100.CrossRefGoogle Scholar
  26. 26.
    Miranda A C O, Gerlich A, and Walbridge S, Eng Fract Mech 147 (2015) 243.CrossRefGoogle Scholar
  27. 27.
    ASTM E112-13 Standard Test Methods for Determining Average Grain Size, ASTM International (2013).Google Scholar
  28. 28.
    ASTM. E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials, ASTM International (2016).Google Scholar
  29. 29.
    Le Jolu T, Etude de l’influence des defaults de soudage sur le comportement plastique et la durée de vie en fatigue de soudures par friction-malaxage d’un alliage Al–Cu–Li, PhD Thesis, Ecole Nationale Superieure des Mines de Paris France (2011).Google Scholar
  30. 30.
    ASTM. E466-15. Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, ASTM International (2015).Google Scholar
  31. 31.
    Leitão C, Louro R, and Rodrigues D M, Mater Des 37 (2012) 402.CrossRefGoogle Scholar
  32. 32.
    Humphreys F J, and Hatherly M, Recrystallization and Related Annealing Phenomena, Elsevier, Oxford (2004).Google Scholar
  33. 33.
    Jata K V, and Semiatin S L, Scr Mater 43 (2000) 743.CrossRefGoogle Scholar
  34. 34.
    Heinz B, and Skrotzki B, Metall Mater Trans B 33 (2002) 489.CrossRefGoogle Scholar
  35. 35.
    Mroczka K, Dutkiewicz J, and Pietras A, J Micro 237 (2010) 521.CrossRefGoogle Scholar
  36. 36.
    Bocchi S, Cabrini M, D’Urso G, Giardini C, Lorenzi S, and Pastore T, J Manuf Process 35 (2018) 1.CrossRefGoogle Scholar
  37. 37.
    Biswas A, Siegel D J, Wolverton C, and Seidman D N, Acta Mater 59 (2011) 6187.CrossRefGoogle Scholar
  38. 38.
    Tsao C-S, Huang E-W, Wen M-H, Kuo T-Y, Jeng S-L, Jeng U-S, and Sun Y-S, J Alloys Compd 579 (2013) 138.CrossRefGoogle Scholar
  39. 39.
    Al Jarrah J A, Swalha S, Abu Mansour T, Ibrahim M, Al Rashdan M, and Al Qahsi D A, Mater Des 56 (2014) 929.CrossRefGoogle Scholar
  40. 40.
    Rajakumar S, Muralidharan C, and Balasubramanian V, Mater Des 32 (2011) 535.CrossRefGoogle Scholar
  41. 41.
    Liu H J, Fujii H, Maeda M, and Nogi K, J Mater Proc Technol 142 (2003) 692.CrossRefGoogle Scholar
  42. 42.
    Jata K V, Sankaran K K, and Ruschau J J, Metall Mater Trans A 31 (2000) 2181.CrossRefGoogle Scholar
  43. 43.
    Dubost B, and Sainfort P, Durcissement par précipitation des alliages d’aluminium Tech. Ing. M240-19 (1991).Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • O. Mimouni
    • 1
  • R. Badji
    • 2
    Email author
  • A. Kouadri-David
    • 3
  • R. Gassaa
    • 4
  • N. Chekroun
    • 5
  • M. Hadji
    • 1
  1. 1.Laboratoire des AeronefsUniversity of Blida 1BlidaAlgeria
  2. 2.Research Centre in Industrial Technologies CRTICheragaAlgeria
  3. 3.Laboratory of Civil and Mechanical Engineering (LGCGM)INSA-RennesRennesFrance
  4. 4.Mechanical and Aeronautical Research and Development Centre AlgiersAlgiersAlgeria
  5. 5.Research Laboratory of Manufacturing Mechanical Technology ENPOAlgiersAlgeria

Personalised recommendations