Advertisement

Spark Plasma Sintering of Graded Dissimilar Metals

  • N. Naveen Kumar
  • G. D. Janaki RamEmail author
  • S. S. Bhattacharya
Technical Paper
  • 8 Downloads

Abstract

An attempt was made to produce graded stainless steel (SS)/commercially pure titanium (Ti) samples using spark plasma sintering. A cylindrical sample of 20 mm diameter and 38 mm height, consisting of six layers with decreasing amounts of Ti (in steps of ~ 20 vol.%) from layer L1 (100 vol.% Ti) to layer L6 (100 vol.% SS), was targeted. After process optimization, fully dense, graded SS/Ti samples were successfully produced. However, the samples showed several different intermetallics such as FeTi, NiTi, Fe2Ti, and Cr2Ti. The intermetallic formation was found to be most severe in layer L5 (80 vol.% SS + 20 vol.% Ti). These graded SS/Ti samples exhibited a tensile strength of 280 ± 9 MPa and were found to suffer brittle fractures in layer L5. In subsequent experiments, attempts were made to overcome this problem using temperature gradient sintering and/or ball-milled SS powder. While the combined use of temperature gradient sintering and ball-milled SS powder was helpful in improving the tensile strength of graded SS/Ti samples to 320 ± 12 MPa, undesirable intermetallic formation and brittle fractures in layer L5 could not be avoided.

Keywords

Spark plasma sintering Dissimilar welding Joining inserts Compositional gradation Functionally graded materials Temperature gradient sintering 

Notes

References

  1. 1.
    Brentrup G J, and Dupont J N, Weld J 92 (2013) 72s.Google Scholar
  2. 2.
    Sireesha M, Shankar V, Albert S K, and Sundaresan S, Mat Sci Eng A 292 (2000) 74.CrossRefGoogle Scholar
  3. 3.
    Mudali U K, Ananda Rao B M, Shanmugam K, Natarajan R, and Raj B, J Nucl Mater 321 (2003) 40.CrossRefGoogle Scholar
  4. 4.
    Manikandan P, Hokamoto K, Fujita M, Raghukandan K, and Tomoshige R, J Mater Process Technol 195 (2008) 232.CrossRefGoogle Scholar
  5. 5.
    Sames W J, List F A, Pannala S, Dehoff R R, and Babu S S, Int Mater Rev 61 (2016) 315.CrossRefGoogle Scholar
  6. 6.
    Anselmi-Tamburini U, and Groza J R, Mater Sci Technol 33 (2017) 1855.CrossRefGoogle Scholar
  7. 7.
    Guillon O, Gonzalez-Julian J, Dargatz B, Kessel T, Schierning G, Räthel J, and Herrmann M, Adv Eng Mater 16 (2014) 830.CrossRefGoogle Scholar
  8. 8.
    Feng H, Meng Q, Zhou Y, and Jia D, Mat Sci Eng A 397 (2005) 92.CrossRefGoogle Scholar
  9. 9.
    Tokita M, Adv Sci Tech 63 (2010) 322.CrossRefGoogle Scholar
  10. 10.
    Atiyah A, Farid S, and Abdulamer D, Eng & Technol J 31 (2013) 513.Google Scholar
  11. 11.
    Naebe M, and Shirvanimoghaddam K, Appl Mater Today 5 (2016) 223.CrossRefGoogle Scholar
  12. 12.
    Tang X, Zhang H, Du D, Qu D, Hu C, Xie R, and Feng Y, Int J Refract Met Hard Mater 42 (2014) 193.CrossRefGoogle Scholar
  13. 13.
    Dey H C, Ashfaq M, Bhaduri A K, and Rao K P, J Mater Process Technol 209 (2009) 5862.CrossRefGoogle Scholar
  14. 14.
    Muralimohan C H, Muthupandi V, and Sivaprasad K, Procedia Mater Sci 5 (2014) 1120.CrossRefGoogle Scholar
  15. 15.
    Ghosh M, Das S, Banarjee P S, and Chatterjee S, Mat Sci Eng A 390 (2005) 217.CrossRefGoogle Scholar
  16. 16.
    Kundu S, Chatterjee S, Olson D, and Mishra B, Metall Mater Trans A 38 (2007) 2053.CrossRefGoogle Scholar
  17. 17.
    Kundu S, and Chatterjee S, Mater Charact 59 (2008) 631.CrossRefGoogle Scholar
  18. 18.
    Naveen Kumar N, Janaki Ram G D, Bhattacharya S S, Dey H C, and Albert S K, Trans Indian Inst Met 68 (2015) 289.CrossRefGoogle Scholar
  19. 19.
    Ishida K, Gao Y, Nagatsuka K, Takahashi M, and Nakata K, J Alloys Compd 630 (2015) 172.CrossRefGoogle Scholar
  20. 20.
    Fazel-Najafabadi M, Kashani-Bozorg S F, and Zarei-Hanzaki A, Mater Des 31 (2010) 4800.CrossRefGoogle Scholar
  21. 21.
    Kundu S, Ghosh M, Laik A, Bhanumurthy K, Kale G B, and Chatterjee S, Mat Sci Eng A 407 (2005) 154.CrossRefGoogle Scholar
  22. 22.
    Tokita M, Mater Sci Forum 308–311 (1999) 83.CrossRefGoogle Scholar
  23. 23.
    Jin S, Zhang H, Li J, and Jia S, Key Eng Mater 280–283 (2005) 1881.Google Scholar
  24. 24.
    Hong C Q, Zhang X H, Li W J, Han J C, and Meng S H, Mater Sci Eng A 498 (2008) 437.CrossRefGoogle Scholar
  25. 25.
    Nakajima H, and Koiwa M, ISIJ Int 31 (1991) 757.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringVignan’s Institute of Information TechnologyVisakhapatnamIndia
  2. 2.Joining and Additive Manufacturing Laboratory, Department of Metallurgical and Materials EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations