Advertisement

Thermomechanical Phenomenon: A Non-destructive Evaluation Perspective

  • C. ChandraprakashEmail author
  • C. V. Krishnamurthy
  • Krishnan Balasubramaniam
Technical Paper
  • 40 Downloads

Abstract

When subjected to continuous tensile loads, a material cools in the elastic regime and heats up in the plastic regime. Temperature changes are also observed when metals are subjected to cyclic stresses of amplitude below the yield strength. The insights into the use of thermomechanical phenomenon as a NDE technique are presented here based on experimental and computational evidence. Infrared thermal camera has been used to monitor the temperature changes in the materials. Measured temperature changes for tensile load on a material subjected to different levels of plastic deformation and for cyclic load on material are presented. Existing theoretical basis to explain the thermomechanical response is discussed in terms of (a) thermoelastic effect for the elastic regime in tensile load, (b) Taylor–Quinney coefficient for the plastic regime in tensile load, and (c) phenomenological models for the cyclic load. For the case of monotonic tensile loading, the extent of initial plastic deformation of a material is experimentally correlated with the observed decrease in temperature in the elastic regime. For the case of cyclic loading leading to stresses below the yield strength, the Kelvin–Voigt model has been found to be sufficient to explain the temperature changes. Amount of plastic deformation accumulated in the material can be deduced based on the decrease in temperature during tensile loading. Closeness between the parameters of Kelvin–Voigt model and that of the grain make this model suitable for understanding the thermomechanical response of polycrystalline materials subjected to stresses below the yield strength. To fully explain the thermoplastic effect beyond the Taylor–Quinney coefficient, a phenomenological model that accounts for the grain resizing, along with rotation and sliding, during the plastic deformation needs to be developed.

Keywords

Thermoelasticity Internal heat Plastic regime Grain boundaries Grain boundary sliding 

Notes

Acknowledgements

We thank Pravin Patil and Dr. Kathirvel Thiyagarjan for their contributions in major experimental aspects of this work.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    NDT resource. Available from: https://www.asnt.org/MinorSiteSections/AboutASNT/Intro-to-NDT [Accessed: 2018-01-07].
  2. 2.
    Schmerr Jr L, Fundamentals of Ultrasonic Nondestructive EvaluationA Modeling Approach, 2nd ed, Springer, AG Switzerland (2016), p 765.CrossRefGoogle Scholar
  3. 3.
    Maldague X, Theory and practice of infrared technology for nondestructive testing, 1st ed, Wiley, New York (2001), p 684.Google Scholar
  4. 4.
    Liaw P, Wang H, Jiang L, Yang B, Huang J, Kuo R, and Huang J, Scr Mater 42 (2000) 389.CrossRefGoogle Scholar
  5. 5.
    Pandey K and Chand S, Int J Pres Ves Pip 80 (2003) 673.CrossRefGoogle Scholar
  6. 6.
    Risitano A, and Risitano G, J Theor Appl Fract Mech 54 (2010) 82.CrossRefGoogle Scholar
  7. 7.
    Pieczyska E, J Theor Appl Fract Mech 37 (1999) 349.Google Scholar
  8. 8.
    Rusinek A, and Klepaczko J, Mater Des 30 (2009) 35.CrossRefGoogle Scholar
  9. 9.
    Knysh P, and Korkolis Y, Mech Mater 86 (2015) 71.CrossRefGoogle Scholar
  10. 10.
    Patil P, Thiyagarajan K, Prakash R, Balasubramaniam K, Int J Adv Manuf Technol (2009).  https://doi.org/10.1007/s00170-008-1870-1.
  11. 11.
    Saai A, Louche H, Tabourot L, and Chang H, Mech Mater 42 (2010) 275.CrossRefGoogle Scholar
  12. 12.
    Rittel D, Kidane A A, Alkhader M, Venkert A, Landau P, and Ravichandran G, Acta Mater 60 (2012) 3719.CrossRefGoogle Scholar
  13. 13.
    Heller M, Williams J, Dunn S, and Jones R, Compos Struct 11 (1989) 309.CrossRefGoogle Scholar
  14. 14.
    Panoskaltsis V, Bahuguna S, and Soldatos D, Int J NonLinear Mech 39 (2004) 709.CrossRefGoogle Scholar
  15. 15.
    Arruda E, Boyce M, and Jayachandran R, Mech Mater 19 (1995) 193.CrossRefGoogle Scholar
  16. 16.
    Patil P, Fatigue Damage Characterization in a Stainless Steel Using Infrared Thermography, M. Tech Thesis, Indian Institute of Technology Madras, India (2010).Google Scholar
  17. 17.
    Thiyagarajan K, Application of Infrared Thermographic Technique to Plastic Deformation Studies, Ph D Thesis, Indian Institute of Technology Madras, India (2010).Google Scholar
  18. 18.
    Thyiagarajan K, Prakash R, and Balasubramaniam K, in Proceedings of the 11th International Conference on Quantitative InfraRed Thermography QIRT-2012-253 (2012) June, Naples, Italy.Google Scholar
  19. 19.
    Lee H, Chen J, and Wang J, J Mater Sci 28 (1993) 5500.CrossRefGoogle Scholar
  20. 20.
    Boulanger T, Chrysochoos A, Mabru C, and Galtier A, Int J Fatigue 26 (2004) 221.CrossRefGoogle Scholar
  21. 21.
    Meneghetti G, Int J Fatigue 29 (2007) 81.CrossRefGoogle Scholar
  22. 22.
    Mareau C, Favier V, Weber B, and Galtier A, Int J Fatigue 31 (2009) 1407.CrossRefGoogle Scholar
  23. 23.
    Ke T, Phys Rev 71 (1947) 533.CrossRefGoogle Scholar
  24. 24.
    Herring C, J Appl Phys 21 (1950) 437.CrossRefGoogle Scholar
  25. 25.
    Chindam C, Chitti Venkata K, Balasubramaniam K, and Prakash R V, Mater Sci Eng A 560 (2013) 54.CrossRefGoogle Scholar
  26. 26.
    Norton R L, Machine Design: An integrated approach, Pearson Education Inc, London (2000), p 1078.Google Scholar
  27. 27.
    Luong M, Mech Mater 28 (1998) 155.CrossRefGoogle Scholar
  28. 28.
    Anderson T, Fracture Mechanics: Fundamentals and Applications, 3rd ed, CRC Press, Boca Raton (2005), p 622.CrossRefGoogle Scholar
  29. 29.
    Greene R, Patterson E, and Rowlands R, in Handbook of Experimental Solid Mechanics, (ed) Sharpe W, Springer, New York (2008) p 743.CrossRefGoogle Scholar
  30. 30.
    Thomson W, Trans R Soc Edinb Earth 20 (1853) 261.CrossRefGoogle Scholar
  31. 31.
    Lord H and Shulman Y, J Mech Phys Solids 15 (1967) 299.CrossRefGoogle Scholar
  32. 32.
    Wong A, Jones R, and Sparrow J, J Phys Chem Solids 48 (1987) 749.CrossRefGoogle Scholar
  33. 33.
    Boley B, and Weiner J, Theory of Thermal Stresses, Wiley, London (1962), p 608.Google Scholar
  34. 34.
    Lubarda V, Int J Solids Struct 22 (1986) 1517.CrossRefGoogle Scholar
  35. 35.
    Schreyer H, and Maudlin P, Philos Trans R Soc A 363 (2005) 2517.CrossRefGoogle Scholar
  36. 36.
    Zehnder A, Mech Res Commun 18 (1991) 23.CrossRefGoogle Scholar
  37. 37.
    Taylor G, and Quinney H, Proc R Soc A 143 (1934) 307.CrossRefGoogle Scholar
  38. 38.
    Hodowany J, Ravichandran G, Rosakis A, and Rosakis P, Exp Mech 40 (2000) 113.CrossRefGoogle Scholar
  39. 39.
    Zaera R, Rodríguez-Martínez J, and Rittel D, Int J Plast 40 (2013) 185.CrossRefGoogle Scholar
  40. 40.
    Oliferuk W, Swiatnicki W, and Grabski M, Mater Sci Eng A 197 (1995) 49.CrossRefGoogle Scholar
  41. 41.
    Dumoulin S, Louche H, Hopperstad O, and Børvik T, Eur J Mech A-Solids 29 (2010) 461.CrossRefGoogle Scholar
  42. 42.
    ASTM standards. Available from http://www.trl.com/astm_e8_tensile_testing_of_metals/ [Accessed 2018-01-14].
  43. 43.
    Carslaw H, and Jaeger J, Conduction of Heat in Solids, Clarendon Press, Oxford (1947), p 540.Google Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • C. Chandraprakash
    • 1
    Email author
  • C. V. Krishnamurthy
    • 2
  • Krishnan Balasubramaniam
    • 3
  1. 1.Department of Mechanical EngineeringIndian Institute of Technology KanpurKanpurIndia
  2. 2.Department of PhysicsIndian Institute of Technology MadrasChennaiIndia
  3. 3.Department of Mechanical EngineeringIndian Institute of Technology MadrasChennaiIndia

Personalised recommendations