Advertisement

Effect of Nature of Flux and Flux Gap on the Depth-to-Width Ratio in Flux-Bounded TIG Welding of AA6061: Experiments and Numerical Simulations

  • N. NeethuEmail author
  • Rahul Goud Togita
  • P. Neelima
  • P. Chakravarthy
  • S. V. S. Narayana Murty
  • Manoj T. Nair
Technical Paper
  • 54 Downloads

Abstract

Flux-bounded tungsten inert gas welding is a variant of activated tungsten inert gas welding wherein activating flux is applied on the weld surface with a narrow flux gap along the line of weld. In this study, bead-on-plate welds were performed with flux gaps of 2, 3, 4, 5 and 6 mm using the fluxes silicon dioxide, titanium dioxide and calcium fluoride. The weld bead profiles were obtained using a stereomicroscope from which the depth-to-width ratios (DWRs) were calculated and compared with the DWR of a tungsten-inert-gas-welded plate. The reasons for differences in DWR were explained using the mechanisms involved and the captured images of the welding arc profile. The microstructure of the weld beads revealed no entrapment of flux particles. The increase in the DWR in the presence of activating flux was also substantiated using a numerical simulation model.

Keywords

FBTIG welding Depth of penetration Activating flux Marangoni convection currents Numerical simulation 

Notes

References

  1. 1.
    Messler R W Jr, Principles of Welding: Processes, Physics, Chemistry and Metallurgy, Wiley, Hoboken (2004) p 51.Google Scholar
  2. 2.
    Paskell C, Weld J 76 (1997) 57.Google Scholar
  3. 3.
    Lucas W, Howse D, Savitsky M M, and Kovalenko I V, in IIW/IIS Budapest Proceedings (1996) p 257.Google Scholar
  4. 4.
    Jayakrishnan S, and Chakravarthy P, J Manuf Process 28 (2017) 116.CrossRefGoogle Scholar
  5. 5.
    Sire S and Marya S, Int J Form Process 5 (2002) 39.CrossRefGoogle Scholar
  6. 6.
    Kuang-Hung T, Powder Technol 233 (2013) 72.CrossRefGoogle Scholar
  7. 7.
    Goldak J A, and Akhlaghi M, Computational Welding Mechanics, Springer, Berlin (2005) p 28.Google Scholar
  8. 8.
    Howse D S, and Lucas W, Sci Technol Weld Join 5 (2000) 189.CrossRefGoogle Scholar
  9. 9.
    Sugden S, J Chem Soc Trans 125 (1924) 32.CrossRefGoogle Scholar
  10. 10.
    Leitner T, Thermophysical Properties of Liquid Aluminium Determined by Means of Electromagnetic Levitation, Master’s Thesis, Graz University of Technology, Graz (2016).Google Scholar
  11. 11.
    Thomas B. Reed, Free Energy of Formation of Binary Compounds, MIT Press, Cambridge (1971).Google Scholar
  12. 12.
    Leconte S, Paillard P, Chapelle P, Henrion G, and Saindrenan J, Sci Technol Weld Join 12 (2007) 120.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  • N. Neethu
    • 1
    Email author
  • Rahul Goud Togita
    • 1
  • P. Neelima
    • 2
  • P. Chakravarthy
    • 1
  • S. V. S. Narayana Murty
    • 3
  • Manoj T. Nair
    • 1
  1. 1.Department of Aerospace EngineeringIndian Institute of Space Science and TechnologyTrivandrumIndia
  2. 2.Department of ChemistryIndian Institute of Space Science and TechnologyTrivandrumIndia
  3. 3.Materials and Metallurgy GroupVikram Sarabhai Space CentreTrivandrumIndia

Personalised recommendations