Effect of Particle Size on Physical and Mechanical Properties of Fly Ash Based Geopolymers

  • Prateek Kumar Sharma
  • Jitendra Prasad Singh
  • Anil KumarEmail author
Technical Paper


The particle size of fly ash has influenced the physical and mechanical properties of geopolymers. Fly ash completely was ground to different pre-decided sizes, sieve sizes 180 μm, 90 μm and 45 μm (80 mesh, 170 mesh, 325 mesh) for formulation of geopolymer paste, and two activators were used: 8(M) NaOH and 1:1 mixture of NaOH and Na2SiO3. The heat evolution increased with increasing fineness of fly ash. The increase in ambient temperature enhanced the extent of geopolymerization. The maximum heat flow was obtained with the finest fly ash particle of size 45-μm (325 mesh). The microstructures of the various geopolymers revealed the compactness of the structure which had the finest 45-μm (325 mesh) particle size and silicate-activated geopolymers. Apparent porosity was found to decrease with increasing fineness and addition of sodium silicate. Mercury intrusion porosimetry (MIP) revealed the total porosity; median pore size and average pore diameter were found to decrease with increasing fineness. However, mesopores were seen to be more in 45-μm (325 mesh) fly ash geopolymers compared to 180-μm (80 mesh) fly ash geopolymers. Compressive strengths of geopolymer formed by 45-μm (325 mesh) particle size had greater compressive strength in comparison with the coarser one. Inclusion of sodium silicate in the activator solution was helped in enhancing the compressive strength.


Fly ash Geopolymers Microstructure Porosity Compressive strength MIP 



Authors gratefully acknowledge Director, National Institute of Foundry and Forge Technology, Hatia, Ranchi, India, and Director, BIT Sindri, Dhanbad, India, for having made available facilities for carrying out this work, along with valuable scientific and technical assistance.


  1. 1.
    Khale D, and Chaudhary R, J Mater Sci 42 (2007) 729.CrossRefGoogle Scholar
  2. 2.
    Xu H, and van Deventer J S J, Ind Eng Chem Res 42 (2003) 1698.CrossRefGoogle Scholar
  3. 3.
    Xu H, and van Deventer J S J, Mater Eng 15 (2002) 1131.Google Scholar
  4. 4.
    Zhang Z, Wang H, Zhu Y, Reid A, Provis J L, and Bullen F, Appl Clay Sci 88–89 (2014) 194.CrossRefGoogle Scholar
  5. 5.
    van Jaarsveld J G, van Deventer J S, and Lukey G, Chem Eng J 89 (2002) 63.CrossRefGoogle Scholar
  6. 6.
    He J, Zhang J, Yu Y, and Zhang G, Constr Build Mater 30 (2012) 80.CrossRefGoogle Scholar
  7. 7.
    Abdel-Gawwad H A, and Abo-El-Enein S A, HBRC J 12 (2014) 13.CrossRefGoogle Scholar
  8. 8.
    Kumar S, Kumar R, Bandopadhyay A, and Mehrotra S P, in International Conference Alkali Activated MaterialsResearch, Production and Utilization (2007).Google Scholar
  9. 9.
    Ducman V, and Kramar S, Chem Ind Chem Eng Q 21 (2015) 13.CrossRefGoogle Scholar
  10. 10.
    Nath S K, Maitra S, Mukherjee S, and Kumar S, J Therm Anal Calorim 127 (2016) 1953.CrossRefGoogle Scholar
  11. 11.
    Petermann J C, Saeed A, and Hammons M I, Alkali-Activated Geopolymers: A Literature Review, Panama City (2010).Google Scholar
  12. 12.
    Somna K, Jaturapitakkul C, Kajitvichyanukul P, and Chindaprasirt P, Fuel 90 (2011) 2118.CrossRefGoogle Scholar
  13. 13.
    Davidovits J, in Proccedings of geopolymer, International conference, France (1999).Google Scholar
  14. 14.
    Kong D L Y, Sanjayan J G, and Sagoe-Crentsil K, Cem Concr Res 37 (2007) 1583.CrossRefGoogle Scholar
  15. 15.
    Lee N K, and Lee H K, Constr Build Mater 47 (2013) 1201.CrossRefGoogle Scholar
  16. 16.
    Li Z, and Liu S, J Mater Civ Eng 19 (2007) 470.CrossRefGoogle Scholar
  17. 17.
    Luna Galiano Y, Fernández-Pereira C, and Izquierdo M, Mater Constr 66 (2016) e098.CrossRefGoogle Scholar
  18. 18.
    Al Bakri A M M, Kamarudin H, Binhussain M, Nizar I K, Zarina Y, and Rafiza A R, in International Conference on Physics Science and Technology, Vol. 22 (2011), p. 286.Google Scholar
  19. 19.
    Gao X, Yu Q L, and Brouwers H J H, Constr Build Mater 80 (2015) 105.CrossRefGoogle Scholar
  20. 20.
    Nath S K, and Kumar S, Constr Build Mater 38 (2013) 924.CrossRefGoogle Scholar
  21. 21.
    Yao X, Zhang Z, Zhu H, and Chen Y, Thermochim Acta 493 (2009) 49.CrossRefGoogle Scholar
  22. 22.
    Muñiz-Villarreal M S, Manzano-Ramírez A, Sampieri-Bulbarela S, Ramón Gasca-Tirado J, Reyes-Araiza J L, Rubio-Ávalos J C, Pérez-Bueno J J, Apatiga L M, Zaldivar-Cadena A, Amigó-Borrás V, Mater Lett 65 (2011) 995.CrossRefGoogle Scholar
  23. 23.
    Zhang Z, Provis J L, Wang H, Bullen F, and Reid A, Thermochim Acta 565 (2013) 163.CrossRefGoogle Scholar
  24. 24.
    Chithiraputhiran S, and Neithalath N, Constr Build Mater 45 (2013) 233.CrossRefGoogle Scholar
  25. 25.
    Zhang Z, Wang H, Provis J L, Bullen F, Reid A, and Zhu Y, Thermochim Acta 539 (2012) 23.CrossRefGoogle Scholar
  26. 26.
    Nath S, Constr Build Mater 111 (2016) 758.CrossRefGoogle Scholar
  27. 27.
    Ogundiran M, and Kumar S, Appl Clay Sci 108 (2015) 173.CrossRefGoogle Scholar
  28. 28.
    Li X, Ma X, Zhang S, and Zheng E, Materials (Basel) 6 (2013) 1485.CrossRefGoogle Scholar
  29. 29.
    komljenovic M, Baščarević Z, and Bradić V, J Hazard Mater 181 (2010) 35.CrossRefGoogle Scholar
  30. 30.
    Kumar S, and Kumar R, J Mater Sci 45 (2010) 607.CrossRefGoogle Scholar
  31. 31.
    Bakharev T, Cem Concr Res 35 (2005) 1224.CrossRefGoogle Scholar
  32. 32.
    Guo X, Cem Concr Compos 32 (2009) 142.CrossRefGoogle Scholar
  33. 33.
    Kumar S, Kristály F, and Mucsi G, Adv Powder Technol 26 (2014) 24.CrossRefGoogle Scholar
  34. 34.
    Kupwade-Patil K, and Allouche E N, J Mater Civ Eng 25 (2013) 131.CrossRefGoogle Scholar
  35. 35.
    Perera D S, Uchida O, Vance E R, and Finnie K S, J Mater Civ Eng 42 (2007) 3099.Google Scholar
  36. 36.
    Mucsi G, Kumar S, Csőke B, Kumar R, Molnár Z, Rácz Á, Mádai and F, Debreczeni Á, Int J Miner Process 143 (2015) 50.CrossRefGoogle Scholar
  37. 37.
    Khater H M, Int J Adv Struct Eng 5 (2013) 1.CrossRefGoogle Scholar
  38. 38.
    Pathak A, Kumar S, and Jha V K, Trans Indian Ceram Soc 73 (2014) 37.CrossRefGoogle Scholar
  39. 39.
    Fernández-Jiménez A, and Palomo A, Cem Concr Res 35 (2005) 1984.CrossRefGoogle Scholar
  40. 40.
    Panias D, Giannopoulou I P, and Perraki T, Colloids Surf A Physicochem Eng Asp 301 (2007) 246.CrossRefGoogle Scholar
  41. 41.
    Mucsi G, Molnar Z, and Kumar S, in International Mineral Processing Congresss (2016).Google Scholar
  42. 42.
    Kumar S, Kristály F, and Mucsi G, Adv Powder Technol 26 (2015) 24.CrossRefGoogle Scholar
  43. 43.
    Kumar S, and Kumar R, Ceram Int 37 (2011) 533.CrossRefGoogle Scholar
  44. 44.
    Gao K, Lin K-L, Wang D, Hwang C-L, Anh Tuan B L, Shiu H-S, Cheng T-W, Constr Build Mater 48 (2013) 441.CrossRefGoogle Scholar
  45. 45.
    Villaquiran-Caicedo M A, de Gutierrez R M, Sulekar S, Davis C, and Nino J C, Appl Clay Sci 118 (2015) 276.CrossRefGoogle Scholar
  46. 46.
    Turner L K, and Collins F G, Constr Build Mater 43 (2013) 125.CrossRefGoogle Scholar
  47. 47.
    Washburn E W, Phys Rev 17 (1921) 273.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.National Institute of Foundry and Forge TechnologyRanchiIndia
  2. 2.BIT SindriDhanbadIndia

Personalised recommendations