Microstructural Refinement and Enhancement in Mechanical Properties of Magnesium/SiC as-Cast Composites via Friction Stir Processing Route

  • Baljinder RamEmail author
  • Dharmpal Deepak
  • Niraj Bala
Technical Paper


In the current investigation, friction stir processing (FSP) was applied to pure magnesium/SiC (silicon carbide) microcomposites. The cylindrical threaded tool pin profile, tool travel speed of 50 mm/min and tool rotational speeds of 1000 rpm, 1300 rpm and 1600 rpm were used to perform the experiments. The effect of FSP on SiC particle's distribution and matrix microstructure were evaluated by using an optical microscope and scanning electron microscope techniques. The mechanical characterization involving tensile yield strength, ultimate tensile strength and microhardness was carried out. The results of the study revealed that FSP was clearly successful in breaking the SiC particle's clusters, refinement of the particle size and uniform distribution of SiC in the magnesium matrix, which subsequently led to the betterment of tensile strength and ductility of the composite. It was also observed that the grain size of composite increased when the rotational speed was enhanced to 1600 rpm owing to high heat input. The study concluded that the friction stir-processed composites with refined grain size and reduced porosity resulted in much higher hardness (106 Hv), yield tensile strength (90 MPa) and elongation (10.6%) as compared to their counterparts.


Friction stir processing Mg/SiC composite Stir casting Mechanical properties 



This work was supported by AICTE, Government of India, under Research Promotion Scheme Grant No: 20/AICTE/RIFD/RPS (Policy-IV) 33/2012-13. The authors gratefully acknowledge the All India Council for Technical Education (AICTE) for providing the financial support.


  1. 1.
    Kulekci M K, Int J Adv Manuf Technol 39 (2008) 851.CrossRefGoogle Scholar
  2. 2.
    Aghion E, Bronfin B, Von Buch F, Schumann S, and Friedrich H, JOM 55 (2003) 30.CrossRefGoogle Scholar
  3. 3.
    Sijo M T, and Jayadevan K R, Proc Technol 24 (2016) 379.CrossRefGoogle Scholar
  4. 4.
    Saravanan R A, and Surappa M K, Mater Sci Eng A 276 (2000) 108.CrossRefGoogle Scholar
  5. 5.
    Ram B, Drivadi D D, and Bala N, Mater Res Expr 6 (2019) 026577.CrossRefGoogle Scholar
  6. 6.
    Ma Z Y, Sharma S R, and Mishra R S, Metall Mater Trans A 37 (2006) 3323.CrossRefGoogle Scholar
  7. 7.
    Darras B M, Khraisheh M K, Abu-Farha F K, and Omar M A, J Mater Process Technol 191 (2007) 77.CrossRefGoogle Scholar
  8. 8.
    Ahmadkhaniha D, Järvenpää A, Jaskari M, Sohi M H, Zarei-Hanzaki A, Fedel M, Deflorian F, and Karjalainen LP, J Mech Behav Biomed Mater 61 (2016) 360.CrossRefGoogle Scholar
  9. 9.
    Feng A H, and Ma Z Y, Scr Mater 56 (2007) 397.CrossRefGoogle Scholar
  10. 10.
    Xiao B L, Yang Q, Yang J, Wang W G, Xie G M, and Ma Z Y, J Alloys Compd 509 (2011) 2879.CrossRefGoogle Scholar
  11. 11.
    Wang Y, Huang Y, Meng X, Wan L, and Feng J, J Alloys Compd 696 (2017) 875.CrossRefGoogle Scholar
  12. 12.
    Cavaliere P, and De Marco P P, J Mater Process Technol 184 (2007) 77.CrossRefGoogle Scholar
  13. 13.
    Koganti R, Lakshminarayanan A, and Ramprabhu T, Understanding the Effect of Tool Rotational Speed on Microstructure and Mechanical Properties of Friction Stir Processed ZE41 Grade Magnesium Alloy, in Advances in Materials and Metallurgy, Springer, Berlin (2019), p 427.CrossRefGoogle Scholar
  14. 14.
    Huang Y, Wang Y, Meng X, Wan L, Cao J, Zhou L, and Feng J, J Mater Process Technol 249 (2017) 331.CrossRefGoogle Scholar
  15. 15.
    Navazani M, and Dehghani K, Proc Mater Sci 11 (2015) 509.CrossRefGoogle Scholar
  16. 16.
    Arokiasamy S, and Anand Ronald B, Int J Adv Manuf Technol 93 (2017) 493.CrossRefGoogle Scholar
  17. 17.
    Alavi Nia A, and Nourbakhsh S H, Trans Indian Inst Met 69 (2016) 1435.CrossRefGoogle Scholar
  18. 18.
    Naser A Z, and B M Darras, Int J Adv Manuf Technol 91 (2017) 781.Google Scholar
  19. 19.
    Ram B, Drivadi D D, and Bala N, J Emerg Technol Innov Res 5 (2018) 171.Google Scholar
  20. 20.
    Singh A, and Bala N, Metall Mater Trans A 48 (2017) 5031.CrossRefGoogle Scholar
  21. 21.
    Zou L, Bloebaum R D, and Bachus K N, Med Eng Phys 19 (1997) 63.CrossRefGoogle Scholar
  22. 22.
    Poddar P, Srivastava V C, De P K, Sahoo K L, Mater Sci Eng A 460–461 (2007) 357.CrossRefGoogle Scholar
  23. 23.
    Sun N, and Apelian D, Mater Sci Forum 690 (2011) 125.CrossRefGoogle Scholar
  24. 24.
    Vijayavel P, Balasubramanian V, Sundaram S, Mater Des 57 (2014) 1.CrossRefGoogle Scholar
  25. 25.
    Razal Rose A, Manisekar K, and Balasubramanian V, J Mater Eng Perform 21 (2012) 257.CrossRefGoogle Scholar
  26. 26.
    Xunhong W, and Kuaishe W, Mater Sci Eng A 431 (2006) 114.CrossRefGoogle Scholar
  27. 27.
    Azizieh M, Kokabi A H, and Abachi P, Mater Des 32 (2011) 2034.CrossRefGoogle Scholar
  28. 28.
    Huang Y, Wang T, Guo W, Wan L, and Lv S, Mater Des 59 (2014) 274.CrossRefGoogle Scholar
  29. 29.
    Ajith Kumar K K, Viswanath A, Rajan T P, Pillai U T, Pai B C, Acta Metall Sin(Engl Lett) 27 (2014) 295.Google Scholar
  30. 30.
    Sun H-F, Li C-J, Xie Y, and Fang W-B, Trans Nonferrous Met Soc China 22 (2012) s445.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentPunjabi UniversityPatialaIndia
  2. 2.Mechanical Engineering DepartmentBaba Banda Singh Bahadur Engineering CollegeFatehgarh SahibIndia

Personalised recommendations