STM Light Emission Spectroscopy of Self-Assembled Monolayer of Alkanethiol on Au Film

  • Jamal Uddin AhamedEmail author
  • Satoshi Katano
  • Yoichi Uehara
Technical Paper


In this paper, scanning tunneling microscope (STM) light emission (STM-LE) from alkanethiol self-assembled monolayer (SAM)-covered Au film has been probed in the Kretschmann configuration. The films were deposited on the smooth plane of a hemispherical glass prism. STM-LEs from the tip–sample gap into the vacuum (tip-side emission) and into the prism (prism-side emission) were investigated. Our experimental results showed that the tip-side emission was scarcely found, and the prism-side emissions were successfully detected due to the enhancement of Kretschmann configuration. It was also found from the experimental study that the peak intensity of STM-LE spectra become smaller, accompanying the redshift of the peak position with the rise in thickness of the alkanethiol SAM film. The main focus of this paper is to explore the behavior of electron tunneling into the SAM-covered Au film. In order to explain these phenomena, we have designed different models regarding the tip–sample gap structure. Among these models, the antenna factor successfully explains the cutoff energy shift of STM-LE spectra. According to this model, the cutoff energy shows redshift when the electronic transition occurs at the Au–S interface layer and the amount of the shift depends on the strength of the transitions.


STM-LE Alkanethiol SAM Cutoff energy Redshift Au–S interface Antenna factor 



The work was carried out partially in the Nano-Photoelectronics Laboratory, Tohoku University, Japan. The Authors would like to thank all the Laboratory supporting staffs for their technical assistance during experimental measurements and theoretical calculations.


  1. 1.
    Coombs J H, Gimzewski J K, Reihl B, Sass J K, and Schlittler R R, J Microsc 152 (1988) 325.CrossRefGoogle Scholar
  2. 2.
    Uehara Y, Ito K, and Ushioda S, Appl Surf Sci 107 (1996) 247.CrossRefGoogle Scholar
  3. 3.
    Alvarado S F, Renaud Ph, and Meier H P, J Phys IV France 01 (1991) C6-271-C6-275.Google Scholar
  4. 4.
    Katano S, Ushioda S, Uehara Y, J Phys Chem Lett 1 (2010) 2763.CrossRefGoogle Scholar
  5. 5.
    Uehara Y, Iida T, Ito K, Iwami M, Ushioda S, Phys Rev B 65 (2002) 155408-1-5.CrossRefGoogle Scholar
  6. 6.
    Takeuchi K, Uehara Y, Ushioda S, Morita S, J Vac Sci Technol B 9 (1991) 557.CrossRefGoogle Scholar
  7. 7.
    Ushioda S, Uehara Y, Kuwahara M, Appl Surf Sci 60-1 (1992) 448.CrossRefGoogle Scholar
  8. 8.
    Ahamed J U, Sanbongi T, Katano S, and Uehara Y, Jpn J Appl Phys 49 (2010) 08LB09-1-3.Google Scholar
  9. 9.
    Ahamed J U, Katano S, and Uehara Y, Bull Mater Sci 38 (2015) 1271.CrossRefGoogle Scholar
  10. 10.
    Rendell R W, and Scalapino D J, Phys Rev B 24 (1981) 3276.CrossRefGoogle Scholar
  11. 11.
    Iida W, Katano S, Uehara Y, Jpn J Appl Phys 49 (2010) 09520-5.CrossRefGoogle Scholar
  12. 12.
    Raether H, Surface Plasmons, Springer-Verlag, Berlin (1988).Google Scholar
  13. 13.
    Ushioda S, Rutledge J E, and Pierce R M, Phys Rev Lett 54 (1985) 224.CrossRefGoogle Scholar
  14. 14.
    Saito H, Mizuma S, Yamamoto N, Nano Lett 15 (2015) 6789.CrossRefGoogle Scholar
  15. 15.
    Iida W, Ahamed J U, Katano S, and Uehara Y, Jpn J Appl Phys 50 (2011) 095201-1-4.CrossRefGoogle Scholar
  16. 16.
    Shi J, Hong B, Parikh A N, Collins R W, and Allara D L, Chem Phys Lett 246 (1995) 90.CrossRefGoogle Scholar
  17. 17.
    Nishitani R, Tateshi Y, Arakawa H, Hisanaga T, Sakaki H, Kasuya A, and Sumiyama K, Surf Rev Lett 10 (2003) 305.CrossRefGoogle Scholar
  18. 18.
    Kuang Y, Yu Y, Luo Y, Zhu J, Liao Y, Zhang Y, and Dong Z, Chin. J. Chem. Phys. 29 (2016) 157.CrossRefGoogle Scholar
  19. 19.
    Joachim C, New J Chem 15 (1991) 223-1-9.Google Scholar
  20. 20.
    Reed M A, Chen J, Rawlett A M, Price D W, and Tour J M, Appl Phys Lett 78 (2001) 3735.CrossRefGoogle Scholar
  21. 21.
    Zhao J, Sun S, Swartz L, Riechers S, Hu P, Chen S, Zheng J, and Liu G, J Phys Chem Lett 6 (2015) 4986.CrossRefGoogle Scholar
  22. 22.
    Ulman, A, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett to Self-Assembly, Academic Press, Boston (1991).Google Scholar
  23. 23.
    Crudden C M, Hugh Horton J, Narouz M R, Li Z, Smith C A, Munro K, Baddeley C J, Larrea C R, Drevniok B, Thanabalasingam B, McLean A B, Zenkina O V, Ebralidze I I, She Z, Kraatz H-B, Mosey N J, Saunders L N, and Yagi A, Nat Chem 6 (2014) 409.CrossRefGoogle Scholar
  24. 24.
    Wang W, Lee T, and Reed M A, Phys Rev B 68 (2003) 035416-1-7.Google Scholar
  25. 25.
    Berndt R, Gaisch R, Schneider W D, Gimzewski J K, Reihl B, Schlittler R R, and Tschudy M, Phys Rev Lett 74 (1995) 102.CrossRefGoogle Scholar
  26. 26.
    Allen F H, Kennard O, Watson D G, Brammer L, Orpen A G, and Taylor R, J Chem Soc Perkin Trans 2 (1987) S1.CrossRefGoogle Scholar
  27. 27.
    Burkert U, and Allinger N L, Molecular Mechanics, ACS Monograph, American Chemical Society, Washington, DC (1982), p 177.Google Scholar
  28. 28.
    Dubois L H, and Nuzzo R G, Annu Rev Phys Chem 43 (1992) 437.CrossRefGoogle Scholar
  29. 29.
    Hone D, Muhlschlegel B, and Scalapino D J, Appl Phys Lett 33 (1978) 203.CrossRefGoogle Scholar
  30. 30.
    Kirtley J R, Theis T N, Tsang J C, and DiMaria D J, Phys Rev B 27 (1983) 4601.CrossRefGoogle Scholar
  31. 31.
    Uehara Y, Kimura Y, Ushioda S, and Takeuchi K, Jpn J Appl Phys 31 (1992) 2465.CrossRefGoogle Scholar
  32. 32.
    Hsu C P, and Marcus R A, J Chem Phys 106 (1997) 584.CrossRefGoogle Scholar
  33. 33.
    Bumm L A, Arnold J J, Dunbar T D, Allara D L, and Weiss P S, J Phys Chem B 103 (1999) 8122.CrossRefGoogle Scholar
  34. 34.
    Sellers H, Ulman A, Shnidman Y, and Eilers J E, J Am Chem Soc 115 (1993) 9389.CrossRefGoogle Scholar
  35. 35.
    Porter M D, Bright T B, Allara D L, and Chidsey C E D, J Am Chem Soc 109 (1987) 3559.CrossRefGoogle Scholar
  36. 36.
    Rampi M A, Schueller O J A, and Whitesides G M, Appl Phys Lett 72 (1998) 1781.CrossRefGoogle Scholar
  37. 37.
    Ahamed J U, Katano S, and Uehara Y, Trans Indian Inst Met 69 (2016) 1579.CrossRefGoogle Scholar
  38. 38.
    Johnson P B, and Christy R W, Phys Rev B 6 (1972) 4370.CrossRefGoogle Scholar
  39. 39.
    Uda M, Nakamura A, Yamamoto T, and Fujirnoto Y, J Electron Spectrosc Relat Phenom 88 (1998) 643.CrossRefGoogle Scholar
  40. 40.
    Hopkins B J, and Riviere J C, Proc Phys Soc London 81 (1963) 590.CrossRefGoogle Scholar
  41. 41.
    Johansson P, Monreal R, and Apell P, Phys Rev B 42 (1990) 9210.CrossRefGoogle Scholar
  42. 42.
    Herrera L J M, Arboleda D M, Schinca D C, and Scaffardi L B, J Appl Phys 116 (2014) 233105-1-8.Google Scholar
  43. 43.
    Kreibig U, and Vollmer M, Optical Properties of Metal Clusters, Springer, Berlin (1995).CrossRefGoogle Scholar
  44. 44.
    Derkachova A, Kolwas K, and Demchenko I, Plasmonics 11 (2016) 941.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringUniversity of ChittagongChittagongBangladesh
  2. 2.Research Institute of Electrical CommunicationTohoku UniversitySendaiJapan

Personalised recommendations