Advertisement

Yield Strength Improvement of an Al-6063 Alloy by Applying a Novel Combination of Cold Working and Heat Treatments for Die Casting of Plastic Parts

  • Jan MayenEmail author
  • A. Gallegos-Melgar
  • Arturo Abúndez
  • Enrique Alcudia
  • Jorge Colín
  • Eduardo Barredo
Technical Paper
  • 30 Downloads

Abstract

In this work, a novel combination of designed heat treatments and cold work performed on Al-6063 alloy was proposed. The consumption of aluminium and its alloys in the automotive and aeronautic industries has increased over the past few years, in the same way, as the consumption of material for manufacturing moulds for casting of plastic parts and dies for plastics and metals. Then, it is important to find a low-cost alternative to maximise the mechanical properties of aluminium, with a negligible effect on the ductility of the alloy, which is important due to thermal and mechanical fatigue on mould and dies. It is well known that precipitation hardening increases the mechanical and yield strength of aluminium alloys with a major ductility loss. However, the developed methodology consists of a solution heat treatment, followed by cold working (strain hardening), and lastly a heat treatment (precipitation hardening and stress reliever) to produce Al 6063 aluminium alloys with enhanced mechanical strength and with a negligible ductility loss. The proposed methodology increases around 23.45% of the tensile and yield strength, with a ductility reduction of less than 1.5% in the elastic materials region. The experimental tensile testing results are correlated with nanoindentation experimental results in order to confirm that the level of cold working is directly proportional to mechanical strength levels by two different characterisation techniques at a macro- and nanoscales, respectively.

Keywords

Aluminium moulds Heat treatments Al-6063 cold work 

Notes

Acknowledgements

Funding was provided by Cátedras CONACYT and Sistema Nacional de Investigadores CONACYT by supporting researchers with the following ID numbers: 2309 and 5150. The authors acknowledge Dr. Juan Muñoz Saldaña head of CENAPROT for providing access to the mechanical properties laboratory facilities.

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical data protection. However, data will be available if requested by the readers.

References

  1. 1.
    Chung S, Im Y, Jeong H, Jeong D, Cho K, Lee S, Choi B, and Choi H, J Mater Process Technol 142 (2003) 326.  https://doi.org/10.1016/s0924-0136(03)00588-0.CrossRefGoogle Scholar
  2. 2.
  3. 3.
  4. 4.
    Immarigeon J P, Holt R T, Koul A K, Zhao L, Wallace W, and Beddoes J C, Mater Charact 35 (1995) 41.  https://doi.org/10.1016/1044-5803(95)00066-6.CrossRefGoogle Scholar
  5. 5.
    Giummarra C, Thomas B, and Rioja R J, in Proceedings of the light metals technology conference, vol 2007 (2007). http://morita1950.info/akio/data/Al-li%20Alloy.pdf.
  6. 6.
    Cole G, and Sherman A M, Mater Charact 35 (1995) 3. https://www.sciencedirect.com/science/article/pii/1044580395000631. Accessed May 17 2018.
  7. 7.
    Dursun T, and Soutis C, Mater Des 56 (2014) 862.  https://doi.org/10.1016/j.matdes.2013.12.002.CrossRefGoogle Scholar
  8. 8.
    Starke E A, and Staley J T, Prog Aerosp Sci 32 (1996) 131.  https://doi.org/10.1016/0376-0421(95)00004-6.CrossRefGoogle Scholar
  9. 9.
    Miller W, Zhuang L, Bottema J, Wittebrood A J, De Smet P, Haszler A, and Vieregge A, Mater Sci Eng A 280 (2000) 37. https://www.sciencedirect.com/science/article/pii/S092150939900653X. Accessed May 17 2018.
  10. 10.
  11. 11.
    Tang S H, Tan Y J, Sapuan S M, Sulaiman S, Ismail N, and Samin R, J Mater Process Technol 182 (2007) 418.  https://doi.org/10.1016/j.jmatprotec.2006.08.025.CrossRefGoogle Scholar
  12. 12.
    Ozcelik B, Ozbay A, and Erhan D, Int Commun Heat Mass Transf 37 (2010) 1359. https://www.sciencedirect.com/science/article/pii/S0735193310001636. Accessed May 17 2018.
  13. 13.
    Calleja F J B, Bayer R K, and Ezquerra T A, J Mater Sci 23 (1988) 1411.CrossRefGoogle Scholar
  14. 14.
    Silva M, Mateus A, Bartolo P, Pouzada A S, and Pontes A J, The effect of mould materials in the performance of products moulded by RIM, in IV Int Mater Symp Port (2007).Google Scholar
  15. 15.
    Campbell F C, Manufacturing Technology for Aerospace Structure Material. Elsevier Press, United Kingdom (2006).Google Scholar
  16. 16.
    Siddiqui R A, Abdullah H A, and Al-Belushi K R, J Mater Process Technol 102 (2000) 234.Google Scholar
  17. 17.
    Jiang D M, Hong B D, Lei T C, Downham D A, and Lorimer G W, Mater Sci Technol 7 (1991) 1010.Google Scholar
  18. 18.
    Nandy S, Bakkar M A, and Das D, Mater Today Proc 2 (2015) 1234.  https://doi.org/10.1016/j.matpr.2015.07.037.CrossRefGoogle Scholar
  19. 19.
    Hodgson D, Wu M, and Biermann R, ASM Handbook, Volume 2, Properties and Selection, Nonferrous Alloys and Special-Purpose Materials (1990). https://scholar.google.com.mx/scholar?hl=es&as_sdt=0%2C5&q=ASM+Handbook+Volume+2%3A+Properties+and+Selection%3A+Nonferrous+Alloys+and+Special-Purpose+Materials&btnG. Accessed November 23 2018.
  20. 20.
    ASTM, ASTM E8/E8M—15a: Standard Test Methods for Tension Testing of Metallic Materials, ASTM, West Conshohocken (2015)  https://doi.org/10.1520/e0008_e0008m-15a.
  21. 21.
  22. 22.
    Babu P, Rao D, Rama Krishna L, and Sundararajan G, Surf Coat Technol 319 (2017) 394. https://www.sciencedirect.com/science/article/pii/S0257897217303651. Accessed May 28, 2018.
  23. 23.
    Seal C, and Sherry A H, Procedia Struct Integr 2 (2016) 1668. https://www.sciencedirect.com/science/article/pii/S2452321616302220. Accessed May 28, 2018.
  24. 24.
    Abúndez A, Pereyra I, Campillo B, Serna S, Alcudia E, Molina A, and Mayén J, Mater Sci Eng A 668 (2016) 201.  https://doi.org/10.1016/j.msea.2016.05.062.CrossRefGoogle Scholar
  25. 25.
    Mayén J, Abúndez A, Pereyra I, Colín J, Blanco A, and Serna S, Eng Fract Mech 177 (2017) 203.  https://doi.org/10.1016/j.engfracmech.2017.03.036.CrossRefGoogle Scholar
  26. 26.
    Mayén J, Abúndez A, Pereyra I, Alcudia E, Porcayo-Calderón J, Colín J, and Campillo B, Surf Coatings Technol 309 (2016) 344.Google Scholar
  27. 27.
    Mayén J, Abúndez A, Porcayo-Calderón J, Pereyra I, Serna S, Puente-Lee I, Salinas-Bravo V M, and Torres-Islas Á, Surf Coat Technol 328 (2017) 488.  https://doi.org/10.1016/j.surfcoat.2017.09.012.CrossRefGoogle Scholar
  28. 28.
    Ortiz D, Abdelshehid M, Dalton R, Soltero J, Clark R, Hahn M, Lee E, Lightell W, Pregger B, Ogren J, Stoyanov P, and Es-Said O S, J Mater Eng Perform 16 (2007) 515.  https://doi.org/10.1007/s11665-007-9074-7.CrossRefGoogle Scholar
  29. 29.
    Talianker M, and Cina B, Metall Trans A 20 (1989) 2087.  https://doi.org/10.1007/bf02650294.CrossRefGoogle Scholar
  30. 30.
    Ramachandran T R, Advances in Aluminium Processing and Its Automotive Application, in Work. Lect. Notes (2006) p. 28.Google Scholar
  31. 31.
    Mukhopadhyay P, ISRN Metall (2012). http://downloads.hindawi.com/journals/isrn.metallurgy/2012/165082.pdf. Accessed July 4, 2017.
  32. 32.
    Esmaeili S, and Lloyd D, Acta Mater 53 (2005) 5257.  https://doi.org/10.1016/j.actamat.2005.08.006.CrossRefGoogle Scholar
  33. 33.
    Ortiz D, Abdelshehid M, Dalton R, Soltero J, Clark R, Ortiz M, Dalton J, Clark R, Hahn M, Lee E, Lightell J, Stoyanov M, Hahn E, Lee W, Lightell J, Ogren P, Stoyanov O S, and Es-Said O S, J Mater Eng Perform 16 (2007) 515.  https://doi.org/10.1007/s11665-007-9074-7.
  34. 34.
    Bourget J -P, Fafard M, Shakeri H R, and Côté T, J Mater Process Technol 209 (2009) 5035.  https://doi.org/10.1016/j.jmatprotec.2009.01.027.CrossRefGoogle Scholar
  35. 35.
    Ringer S P, Muddle B C, and Polmear I J, Metall Mater Trans A 26 (1995) 1659.  https://doi.org/10.1007/bf02670753.CrossRefGoogle Scholar
  36. 36.
    Quainoo G K, and Yannacopoulos S, J Mater Sci 39 (2004) 6495.  https://doi.org/10.1023/b:jmsc.0000044888.01854.e1.CrossRefGoogle Scholar
  37. 37.
    Panigrahi S K, and Jayaganthan R, J Alloys Compd 509 (2011) 9609.  https://doi.org/10.1016/j.jallcom.2011.07.028.CrossRefGoogle Scholar
  38. 38.
    Panigrahi S K, and Jayaganthan R, Mater Sci Eng A 492 (2008) 300.  https://doi.org/10.1016/j.msea.2008.03.029.CrossRefGoogle Scholar
  39. 39.
    Chen K, Liu H, Zhang Z, Li S, and Todd R I, J Mater Process Technol 142 (2003) 190.  https://doi.org/10.1016/s0924-0136(03)00597-1.CrossRefGoogle Scholar
  40. 40.
    Sato Y S, Kokawa H, Enomoto M, Jogan S, and Hashimoto T, Metall Mater Trans A 30 (1999) 3125.  https://doi.org/10.1007/s11661-999-0223-5.CrossRefGoogle Scholar
  41. 41.
    Wu X J, Raizenne M D, Holt R T, Poon C, and Wallace W, Can Aeronaut Space J 47 (2001) 131.Google Scholar
  42. 42.
    Das G, Das M, Ghosh S, Dubey P, and Ray A K, Mater Sci Eng A 527 (2010) 1590.  https://doi.org/10.1016/j.msea.2009.10.037.CrossRefGoogle Scholar
  43. 43.
    Esawi A M K, Morsi K, Sayed A, Taher M, and Lanka S, Compos Part A Appl Sci Manuf 42 (2011) 234.  https://doi.org/10.1016/j.compositesa.2010.11.008.CrossRefGoogle Scholar
  44. 44.
    Sameezadeh M, Emamy M, and Farhangi H, Mater Des 32 (2011) 2157.  https://doi.org/10.1016/j.matdes.2010.11.037.CrossRefGoogle Scholar
  45. 45.
    Butler J F, J Mech Phys Solids 10 (1962) 313. https://www.sciencedirect.com/science/article/pii/0022509662900030. Accessed May 18, 2018.
  46. 46.
  47. 47.
    Lomer W M, J Mech Phys Solids 1 (1952) 64. https://www.sciencedirect.com/science/article/pii/0022509652900070. Accessed May 18, 2018.
  48. 48.
    Nagarajan S, Raghu N, and Venkatraman B, Mater Sci Eng A 561 (2013) 203. https://www.sciencedirect.com/science/article/pii/S0921509312015171. Accessed May 18, 2018.
  49. 49.
    Friedel J, Dislocations, Elsevier Science, Amsterdam (1964).Google Scholar
  50. 50.
    Van Rooyen G T, Mater Sci Eng 3 (1968) 105. https://www.sciencedirect.com/science/article/pii/0025541668900244. Accessed May 18, 2018.
  51. 51.
    Prewo K, Li J, and Gensamer M, Metall Trans 3 (1972) 2261. https://link.springer.com/content/pdf/10.1007/BF02643241.pdf. Accessed May 18, 2018.
  52. 52.
    Delwiche D, and Moon D W, Mater Sci Eng 7 (1971) 203. https://www.sciencedirect.com/science/article/pii/0025541671901467. Accessed May 18, 2018.
  53. 53.
  54. 54.
    Davies C H J, Raghunathan N, and Sheppard T, Acta Metall Mater 42 (1994) 309.  https://doi.org/10.1016/0956-7151(94)90073-6.CrossRefGoogle Scholar
  55. 55.
    Louche H, and Chrysochoos A, Mater Sci Eng 307 (2001) 15. https://www.sciencedirect.com/science/article/pii/S0921509300019754. Accessed May 18, 2018.
  56. 56.
    L. NCSS, NCSS 12 Statistical Software (2018), (n.d.). ncss.com/software/ncss.Google Scholar
  57. 57.
    Hadianfard M, Smerd R, Winkler S, and Worswick M, Mater Sci Eng A 492 (2008) 283. https://www.sciencedirect.com/science/article/pii/S0921509308003201. Accessed May 28, 2018.
  58. 58.
    Cadoni E, Dotta M, Forni D, Bianchi S, in Performance, Protection and Strengthening of Structures under Extreme Loading, Trans Tech Publications (2011), p. 124.  https://doi.org/10.4028/www.scientific.net/AMM.82.124.
  59. 59.
    Naka T, and Yoshida F, J Mater Process Technol 89–90 (1999) 19. https://www.sciencedirect.com/science/article/pii/S0924013699000576. Accessed May 28, 2018.

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.CONACYT-CIATEQUnidad San Luis PotosíSan Luis PotosíMexico
  2. 2.CONACYT-Corporación Mexicana de Investigación en Materiales(COMIMSA)SaltilloMexico
  3. 3.Tecnológico Nacional de México-Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)CuernavacaMexico

Personalised recommendations