Effects of Temporary Alloying and Severe Plastic Deformation on Microstructure Evolution and Mechanical Properties of Ti-Alloys: A Comparative Study

  • S. M. Jagadeesh BabuEmail author
  • S. V. S. Narayana Murty
  • N. Prabhu
  • R. Kapoor
  • R. N. Singh
  • B. P. Kashyap
Technical Paper


Near-α (VT 20) and α + β (Ti–6Al–4V) Ti alloys having similar initial grain morphology with equiaxed α in transformed β were subjected to microstructure refinement processes by thermohydrogen processing (THP) and caliber rolling (CR), respectively. The microstructure analysis after THP and CR of the alloys revealed the change in morphology and refinement of microstructure. The microstructure analysis after initial constant strain rate tests at 850 °C exhibited needle-like morphology for THP alloy, whereas it was equiaxed for as-received VT 20 and CR 750 alloy. An additional attempt was made on the CR alloy towards determining the magnitudes of strain rate sensitivity index (m) through differential strain rate test conducted over a number of strain rate change cycles at 850 °C and 927 °C. Both THP and CR processes resulted in grain refinement and the change in morphology of microstructure.


Thermohydrogen processing Caliber rolling VT20 Ti–6Al–4V Grain refinement 



  1. 1.
    Yingying Z, Shuhui H, Yingjuan F, and Debin S, J Alloys Compd 541 (2012) 60.CrossRefGoogle Scholar
  2. 2.
    Lunt D, Quinta da Fonseca J, Rugg D, and Preussa M, Mater Sci Eng A 680 (2017) 444.CrossRefGoogle Scholar
  3. 3.
    Wang Y C, and Langdon T G, Mater Sci Eng A 559 (2013) 861.CrossRefGoogle Scholar
  4. 4.
    Sinha V, Srinivasan R, Tamirisakandala S, and Miracle D B, Mater Sci Eng A 539 (2012) 7.CrossRefGoogle Scholar
  5. 5.
    Froes F H, Senkov O N, and Qazi J I, Int Mater Rev 49 (2004) 227.CrossRefGoogle Scholar
  6. 6.
    Semiatin S L, and Sargent G A, Key Eng Mater 433 (2010) 235.CrossRefGoogle Scholar
  7. 7.
    Hajizadeh K, Eghbali B, Topolski K, and Kurzydlowski K J, Mater Chem Phys 143 (2014) 1032.CrossRefGoogle Scholar
  8. 8.
    Zherebtsov S V, Scr Mater 51 (2004) 1147.CrossRefGoogle Scholar
  9. 9.
    Kohn D H, and Ducheyne P, J Mater Sci 26 (1991) 328.CrossRefGoogle Scholar
  10. 10.
    Yoshimura H, and Nakahigashi J, J Alloys Compd 293–295 (1999) 858.CrossRefGoogle Scholar
  11. 11.
    Vilane V, and Knutsen R D, Mater Sci Forum 753 (2013) 271.CrossRefGoogle Scholar
  12. 12.
    Shen C C, and Perng T P, Acta Mater 55 (2007) 1053.CrossRefGoogle Scholar
  13. 13.
    Zhang Y, and Zhang S Q, Int J Hydrogen Energy, 22 (1997) 161.CrossRefGoogle Scholar
  14. 14.
    Jagadeesh Babu S M, Prabhu N, Kashyap B P, and Narayana Murty S V S, Mater Sci Technol (2018). Scholar
  15. 15.
    Murty S V S N, Nayan N, Kumar P, Narayanan P R, Sharma S C, and George K M, Mater Sci Eng A 589 (2014) 174.CrossRefGoogle Scholar
  16. 16.
    Zong Y Y, Liang Y C, Yin Z W, and Shan D B, Int J Hydrogen Energy 37 (2012) 13631.CrossRefGoogle Scholar
  17. 17.
    Lin Y C, Jiang X Y, Shuai C J, Zhao C Y, He D G, Chen M S, Chen C, Mater Sci Eng A 711 (2018) 293.CrossRefGoogle Scholar
  18. 18.
    Park C H, Park K, Shin D H, and Lee C S, Mater Trans 49 (2008) 2196.CrossRefGoogle Scholar
  19. 19.
    Kashyap B P, and Mukherjee A K, Metall Trans A 14 (1983) 1875.CrossRefGoogle Scholar
  20. 20.
    Kashyap B P, and Mukherjee A K, J Mater Sci 18 (1983) 3299.CrossRefGoogle Scholar

Copyright information

© The Indian Institute of Metals - IIM 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringREVA UniversityBengaluruIndia
  2. 2.Special Materials Division, Vikram Sarabhai Space CenterISROTrivandrumIndia
  3. 3.Department of Metallurgical Engineering and Materials ScienceIndian Institute of Technology BombayMumbaiIndia
  4. 4.Mechanical Metallurgy DivisionBhabha Atomic Research CentreMumbaiIndia
  5. 5.Department of Metallurgical and Materials EngineeringIndian Institute of Technology JodhpurKarwarIndia

Personalised recommendations